Skip to main content
Log in

Polycyclic Aromatic Hydrocarbons (PAH) in Atmospheric Particles (PM2.5 and PM2.5–10): Integrated Evaluation of the Environmental Scenario in Urban Areas

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The 16 United States Environmental Protection Agency (US EPA) priority polycyclic aromatic hydrocarbons (PAHs) are considered carcinogenic and mutagenic for humans and are emitted by anthropogenic sources mainly in urban areas. For this purpose, the carcinogenic risk in the Metropolitan Region of Porto Alegre/RS (RMPA), Brazil, was investigated due to its demographic density (421.8 inhabitants/km2), industrialization, and high flow of vehicles. The concentration of the 16 PAHs present in PM10–2.5 and PM2.5 was evaluated, and so their origins, the carcinogenic risk of inhalation, and their interaction with meteorological parameters. Dichotomous sampler was used to collect the PM10–2.5 and PM2.5 in the cities of Canoas (CA) and Novo Hamburgo (NH) in RMPA for having different industries and demographic densities. Extracts containing PAHs were analyzed by gas chromatography coupled to mass spectrometry to determine the concentration of PAHs. Thirteen PAHs were found, mainly in PM2.5. The carcinogenic risk was above the US EPA recommended safety range (1 × 10−6) in PM2.5 and PM2.5–10 at both NH and CA. Naphthalene obtained the highest concentration, but the presence of benzo[a]pyrene was determinant for the higher carcinogenic risk in PM2.5. PAHs in RMPA are emitted mainly from burning by vehicles, increasing concentrations in cold seasons. Due to anthropogenic similarities between CA and NH, the interactions among meteorological parameters and air pollutants were the same. High interaction was observed between PM2.5, naphthalene, and meteorological parameters. The integrated evaluation of the factors used by this study shows the relevance of obtaining these data for the prevention of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016, March 1). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (1995). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service., (November).

  • Agudelo-Castañeda, D. M., & Teixeira, E. C. (2014). Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmospheric Environment, 96, 186–200. https://doi.org/10.1016/j.atmosenv.2014.07.030.

    Article  CAS  Google Scholar 

  • Agudelo-Castañeda, D., Teixeira, E., Schneider, I., Lara, S. R., & Silva, L. F. O. (2017). Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environmental Pollution, 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075.

  • Agudelo-Castañeda, D. M., Teixeira, E. C., Braga, M., Rolim, S. B. A., Silva, L. F. O., Beddows, D. C. S., & Querol, X. (2019). Cluster analysis of urban ultrafine particles size distributions. Atmospheric Pollution Research, 10(1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006.

    Article  CAS  Google Scholar 

  • Allen, A. G., da Rocha, G. O., Cardoso, A. A., Paterlini, W. C., Machado, C. M. D., & de Andrade, J. B. (2008). Atmospheric particulate polycyclic aromatic hydrocarbons from road transport in Southeast Brazil. Transportation Research Part D: Transport and Environment, 13(8), 483–490. https://doi.org/10.1016/j.trd.2008.09.004.

    Article  Google Scholar 

  • Alves, D. D., Montanari Migliavaca Osório, D., Siqueira Rodrigues, M. A., & Schuck, S. (2015). Morfologia e composição do material particulado atmosférico da bacia hidrográfica do Rio dos Sinos (RS) analisados por microscopia eletrônica de varredura. Geochimica Brasiliensis, 29(2), 45–57 https://doi.org/10.21715/GB2358-2812.2015292045.

    Google Scholar 

  • Alves, D. D., Riegel, R. P., Klauck, C. R., Ceratti, A. M., Hansen, J., Cansi, L. M., et al. (2020). Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environmental Science and Pollution Research, 27(11), 12202–12214. https://doi.org/10.1007/s11356-020-07791-8.

    Article  CAS  Google Scholar 

  • Amarillo, A. C., Busso, I. T., & Carreras, H. (2014). Exposure to polycyclic aromatic hydrocarbons in urban environments: Health risk assessment by age groups. Environmental Pollution, 195, 157–162. https://doi.org/10.1016/j.envpol.2014.08.027.

    Article  CAS  Google Scholar 

  • ASTM, American Society for Testing and Materials. (2006). Standard guide for choosing locations and sampling methods to monitor atmospheric deposition at non-urban locations: D 5111-99. ATSM: West Conshohocken.

    Google Scholar 

  • ATLAS SOCIOECONÔMICO RIO GRANDE DO SUL. Região Metropolitana de Porto Alegre-RMPA. Last update: 2020a. Available in: <https://atlassocioeconomico.rs.gov.br/regiao-metropolitana-de-porto-alegre-rmpa>. Access in: 22.nov.2020.

  • ATLAS SOCIOECONÔMICO RIO GRANDE DO SUL. Novo Hamburgo. Last update: 2020b. Available in: <https://atlassocioeconomico.rs.gov.br/busca?palavraschave=Novo+hamburgo&secao=169>. Access in: 22.nov.2020.

  • Baalbaki, R., Nassar, J., Salloum, S., Shihadeh, A. L., Lakkis, I., & Saliba, N. A. (2018). Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon. Atmospheric Environment, 179(February 2018), 260–267. https://doi.org/10.1016/j.atmosenv.2018.02.028.

    Article  CAS  Google Scholar 

  • Balakrishnan, K., Brauer, M., Chen, G., & Chow, J. (2015). To humans outdoor air pollution. IARC monographs, 109.

  • Baumbach, M. d. O., & Brusche, N. (2018). Atmospheric conditions that favor pollutant concentrations in the south of Brazil. Revista Brasileira de Meteorologia, 33(2), 269–278. https://doi.org/10.1590/0102-7786332006.

    Article  Google Scholar 

  • Benner, B. A., Wise, S. A., Currie, L. A., Klouda, G. A., Klinedinst, D. B., Zweidinger, R. B., Stevens, R. K., & Lewis, C. W. (1995). Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science & Technology, 29(9), 2382–2389.

    Article  CAS  Google Scholar 

  • Bernardo, D. L., Barros, K. A., Silva, R. C., & Pavão, A. C. (2016). Carcinogenitity of policyclici aromatic hydrocarbons. Química Nova, 39(7), 789–794. https://doi.org/10.5935/0100-4042.20160093.

    Article  CAS  Google Scholar 

  • Byambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., … Hayakawa, K. (2019). Sources and characteristics of polycyclic aromatic hydrocarbons in ambient total suspended particles in Ulaanbaatar City, Mongolia. International Journal of Environmental Research and Public Health, 16(3). https://doi.org/10.3390/ijerph16030442.

  • Cal EPA, California Environmental Protection Agency, 2020. Benzo[a]pyrene as a toxic contaminant. Part B health assessment. August1993. California Environmental Protection Agency (Accessed march 2020). https://www.arb.ca.gov/toxics/id/summary/bap.pdf.

  • Cecinato, A., Guerriero, E., Balducci, C., & Muto, V. (2014). Use of the PAH fingerprints for identifying pollution sources. Urban Climate, 10, 630–643. https://doi.org/10.1016/j.uclim.2014.04.004.

    Article  Google Scholar 

  • Collins, J. F., Brown, J. P., Alexeeff, G. V., & Salmon, A. G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol, 28, 45e54 ARTICLE NO. RT981235.

    Article  Google Scholar 

  • Cristale, J., Silva, F. S., & Marchi, M. R. R. (2008). Desenvolvimento e aplicação de método GC-MS/MS para análise simultânea de 17 HPAs em material particulado atmosférico. Ecletica Quimica, 33(4), 69–78. https://doi.org/10.1590/S0100-46702008000400009.

    Article  CAS  Google Scholar 

  • Costa, G. M. da, Droste, A., Alves, D. D., & Osório, D. M. M. (2018). Integrated evaluation of quantitative factors related to the environmental quality scenario. Handbook of environmental materials management, 1–21. https://doi.org/10.1007/978-3-319-58538-3_122-1.

  • De La Torre-Roche, R. J., Lee, W.-Y., & Campos-Diaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163, 946e958.

    Google Scholar 

  • De Pieri, S., Arruti, A., Huremovic, J., Sulejmanovic, J., Selovic, A., Dordević, D., et al. (2014). PAHs in the urban air of Sarajevo: Levels, sources, day/night variation, and human inhalation risk. Environmental Monitoring and Assessment, 186(3), 1409–1419. https://doi.org/10.1007/s10661-013-3463-1.

    Article  CAS  Google Scholar 

  • Devaraj, S., Tiwari, S., Ramaraju, H. K., Dumka, U. C., Sateesh, M., Parmita, P., & Shivashankara, G. P. (2019). Spatial and temporal variation of atmospheric particulate matter in Bangalore: a technology-intensive region in India. Archives of Environmental Contamination and Toxicology, 77(2), 214–222. https://doi.org/10.1007/s00244-019-00643-8.

    Article  CAS  Google Scholar 

  • DNIT, Departamento Nacional de Infraestrutura de Transportes (2018). Volume médio diário anual. Available in: <http://servicos.dnit.gov.br/dadospnct/ContagemContinua>. Access in: 26.jul.2020.

  • Dubrin, A. J. (1998). METHOD 8270D - Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). (October).

  • Durant, J., Lafleur, A., Busby, W., Donhoffner, L., Penman, B., & Crespi, C. (1999). Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat. Res.- Genet Toxicol. E. M., 446, 1–14.

    Article  CAS  Google Scholar 

  • EGR, Empresa Gaúcha de Rodovias. Volume de Tráfego. (2018). Available in: <https://www.egr.rs.gov.br/conteudo/1716/volume-de-trafego>. Access in: 26.jul.2020.

  • Fang, G. C., Wu, Y. S., Chen, M. H., Ho, T. T., Huang, S. H., & Rau, J. Y. (2004). Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002-2003. Atmospheric Environment, 38, 3385e3391.

    Article  Google Scholar 

  • Feretti, D., Pedrazzani, R., Ceretti, E., Dal Grande, M., Zerbini, I., Viola, G. C. V., … Zani, C. (2018). “Risk is in the air”: polycyclic aromatic hydrocarbons, metals and mutagenicity of atmospheric particulate matter in a town of northern Italy (Respira study). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, (November), 1–15. https://doi.org/10.1016/j.mrgentox.2018.11.002.

  • Fleck, A. d. S., Moresco, M. B., & Rhoden, C. R. (2016). Assessing the genotoxicity of traffic-related air pollutants by means of plant biomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmospheric Pollution Research., 7(3), 488–493. https://doi.org/10.1016/j.apr.2015.12.002.

  • Gao, B., Wang, X. M., Zhao, X. Y., Ding, X., Fu, X. X., Zhang, Y. L., & Guo, H. (2015). Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning. Atmospheric Environment, 103, 114–120. https://doi.org/10.1016/j.atmosenv.2014.12.006.

    Article  CAS  Google Scholar 

  • Gélvez, I. M., Vargas, M. J. Q., & Parra, A. Q. (2016). Actividad mutagénica inducida por hidrocarburos aromáticos policíclicos en muestras de PM2.5en un sector residencial de villa del rosario-norte de santander, Colombia. Revista Internacional de Contaminacion Ambiental, 32(4), 435–444. https://doi.org/10.20937/RICA.2016.32.04.07.

    Article  Google Scholar 

  • Grimmer, G., Jacob, J., & Naujack, K. W. (1983). Profile of the polycyclic aromatic compounds from crude oils-inventory by GC GC/MS PAH in environmental materials: Part 3. Fresenius' Journal of Analytical Chemistry, 316, 29e36.

    Google Scholar 

  • Grinn-Gofroń, A., Strzelczak, A., & Wolski, T. (2011). The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environmental Pollution, 159(2), 602–608. https://doi.org/10.1016/j.envpol.2010.10.002.

    Article  CAS  Google Scholar 

  • Gunawardena, J., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2012). Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmospheric Environment, 54, 502–510. https://doi.org/10.1016/j.atmosenv.2012.02.058.

    Article  CAS  Google Scholar 

  • Han, B., Liu, Y., You, Y., Xu, J., Zhou, J., Zhang, J., … Bai, Z. (2016). Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in North China. Environmental Science and Pollution Research, 23(20), 20194–20204. https://doi.org/10.1007/s11356-016-7209-9.

  • Ianistcki, M., Dallarosa, J., Sauer, C., Teixeira, C. E., & Silva, d. J. (2009). Genotoxic effect of polycyclic aromatic hydrocarbons in the metropolitan area of Porto Alegre, Brazil, evaluated by Helix aspersa (Müller, 1774). Environmental Pollution., 157(7), 2037–2042. https://doi.org/10.1016/j.envpol.2009.02.025.

    Article  CAS  Google Scholar 

  • IARC, I. A. for R. on C. (2013). Air pollution and cancer. In J. S. KURT STRAIF, AARON COHEN (Ed.), Clinical handbook of air pollution-related diseases (161st ed.). https://doi.org/10.1007/978-3-319-62731-1_24

  • IARC, International Cancer Research Agency. IARC monographs on the identification of carcinogenic hazards to humans: List of classifications, volumes 1–125. Available in: < https://monographs.iarc.fr/agents-classified-by-the-iarc/>. Access in: 20.apr.2020.

  • IBGE. Instituto Brasileiro de Geografia e Estatística. Cidades: informações sobre os municípios brasileiros. Instituto Brasileiro de Geografia e Estatística. 2016. Available in: <http://cidades.ibge.gov.br/xtras/home.php>. Access in: 26.nov.2020.

  • IBGE, Instituto Brasileiro de Estatística e Geografia. Cidades e Estados. Available in: <https://www.ibge.gov.br/cidades-e-estados/rs/canoas.html>. Access in: 08. sep. 2020.

  • Jassim, M. S., Coskuner, G., & Munir, S. (2018). Temporal analysis of air pollution and its relationship with meteorological parameters in Bahrain, 2006–2012. Arabian Journal of Geosciences, 11(3), 2006–2012. https://doi.org/10.1007/s12517-018-3403-z.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., … Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment, 106, 178–190. https://doi.org/10.1016/j.atmosenv.2015.01.077.

  • Mandalakis, M., Tsapakis, M., Tsoga, A., & Stephanou, E. G. (2002). Gas-particle con- centrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Observatory, 36, 4023e4035.

    Google Scholar 

  • Marris, C. R., Kompella, S. N., Miller, M. R., Incardona, J. P., Brette, F., Hancox, J. C., … Shiels, H. A. (2020). Polyaromatic hydrocarbons in pollution: A heart-breaking matter. Journal of Physiology, 598(2), 227–247. https://doi.org/10.1113/JP278885.

  • Nascimento, A. P., Santos, J. M., Mill, J. G., de Souza, J. B., Júnior, N. C. R., & Reisen, V. A. (2017). Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children. Revista de Saude Publica, 51(1), 1–10. https://doi.org/10.1590/S1518-8787.2017051006523.

    Article  Google Scholar 

  • Neilson, A. H. (1998). PAHs and related compounds. Berlin: Springer.

    Book  Google Scholar 

  • Nguyen, T. N. T., Jung, K. S., Son, J. M., Kwon, H. O., & Choi, S. D. (2018). Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea. Environmental Pollution, 236, 529–539. https://doi.org/10.1016/j.envpol.2018.01.080.

    Article  Google Scholar 

  • Nisbet, I. C. T., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic- hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • OEHHA, O. of E. H. H.-A. (1994). Benzo(a)pyrene as a toxic air contaminant. Retrieved from https://www.arb.ca.gov/toxics/id/summary/bap.pdf.

  • Patnaik, Pradyot. Handbook of environmental analysis. Lewis Publishers. 1997 by CRC Press LLC. ISBN 0-87371-989-1.

  • Pokhrel, B., Gong, P., Wang, X., Wang, C., & Gao, S. (2018). Polycyclic aromatic hydrocarbons in the urban atmosphere of Nepal: Distribution, sources, seasonal trends, and cancer risk. Science of the Total Environment, 618(October), 1583–1590. https://doi.org/10.1016/j.scitotenv.2017.09.329.

    Article  CAS  Google Scholar 

  • Ramli, N. A., Md Yusof, N. F. F., Shith, S., & Suroto, A. (2020). Chemical and biological compositions associated with ambient respirable particulate matter: a review. Water, Air, and Soil Pollution, 231(3). https://doi.org/10.1007/s11270-020-04490-5.

  • Ravindra, K., Bencs, L., Wauters, E., de Hoog, J., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., & Van Grieken, R. (2006a). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40, 771e785.

    Article  Google Scholar 

  • Ravindra, K., Wauters, E., Taygi, S. K., Mor, S., & Van Grieken, R. (2006b). Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India. Environmental Monitoring and Assessment, 115, 405–417.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol, 27, 636e651.

    Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources, 2. C- 1 through C-30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol, 33, 1578e1587.

    Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (2001). Measurement of emissions from air pollution sources: 3. C1eC29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol, 35, 1716e1728.

    Article  Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (2002). Measurement of emissions from air pollution sources, 5. C1eC32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol, 36, 1169e1180.

    Google Scholar 

  • Slezakova, K., Castro, D., Begonha, A., Delerue-Matos, C., Alvim-Ferraz, M. d. C., Morais, S., & Pereira, M. d. C. (2011). Air pollution from traffic emissions in Oporto, Portugal: Health and environmental implications. Microchemical Journal, 99(1), 51–59. https://doi.org/10.1016/j.microc.2011.03.010.

    Article  CAS  Google Scholar 

  • Sofowote, U. M., Allan, L. M., & McCarry, B. E. (2010). Evaluation of PAH diagnostic ratios as source apportionment tools for air particulates collected in an urban-industrial environment. Journal of Environmental Monitoring, 12(2), 417–424. https://doi.org/10.1039/b909660d.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Garcia, K. O., Meincke, L., & Leal, K. A. (2011). Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles. Atmospheric Research, 101(3), 631–639. https://doi.org/10.1016/j.atmosres.2011.04.010.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Agudelo-Castañeda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. d. O., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the metropolitan area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390–403. https://doi.org/10.1016/j.atmosres.2012.07.004.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Mattiuzi, C. D. P., Agudelo-Castañeda, D. M., De Oliveira Garcia, K., & Wiegand, F. (2013). Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environmental Monitoring and Assessment, 185(11), 9587–9602. https://doi.org/10.1007/s10661-013-3276-2.

    Article  CAS  Google Scholar 

  • Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Kavouras, I. G., Koutrakis, P., Oyola, P., & Von Baer, D. (2002). The composition and sources of HV PM10,2.5 organic aerosol in two urban areas of Chile. Atmos. Environ, 36, 3851e3863.

    Article  Google Scholar 

  • US EPA. (1999). Method TO-13A: Determination of polycyclic aromatic hydrocarbons ( PAHs ) in ambient air using gas chromatography / mass spectrum. EPA Methods, (January), 78.

  • US EPA. (2013a). Method 3540C soxhlet extraction. Journal of Petrology, 369(1), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • US EPA. (2013b). Method 3542- Extraction of semivolatile analytes collected using method 0010 (modified method 5 sampling train). Journal of Petrology, 369(1), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • US EPA. Environmental Protection Agency. Particulate matter (PM) pollution. Disponível em: <https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#reducing> Acesso em: 27. jul. 2020.

  • US EPA. United States Environmental Protection Agency. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons: EPA/ 600/R-93/089. Washington, DC: Office of research and development, US Environmental Protection Agency.

    Google Scholar 

  • Westerholm, R., & Hang, L. (1994). A multivariate statistical analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science and Technology, 28(5), 965–972. https://doi.org/10.1021/es00054a032.

    Article  CAS  Google Scholar 

  • WHO. World Health Organization. (2005). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005. 1–21. https://doi.org/10.1016/0004-6981(88)90109-6

  • WHO. World Health Organization. Air pollution. Available in: <https://www.who.int/health-topics/air-pollution#tab=tab_1>. Access in: 20.mar.2020.

  • Zhai, Y., Li, P., Zhu, Y., Xu, B., Peng, C., Wang, T., … Zeng, G. (2016). Source apportionment coupled with gas/particle partitioning theory and risk assessment of polycyclic aromatic hydrocarbons associated with size-segregated airborne particulate matter. Water, Air, and Soil Pollution, 227(2), 1–15. https://doi.org/10.1007/s11270-015-2744-4.

  • Zhang, H., Wang, Y., Hu, J., Ying, Q., & Hu, X. M. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242–254. https://doi.org/10.1016/j.envres.2015.04.004.

    Article  CAS  Google Scholar 

  • Zhu, Y., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., … Wang, W. (2014). Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: Concentration, size distribution, toxicity and sources. Science of the Total Environment, 466–467, 357–368. https://doi.org/10.1016/j.scitotenv.2013.07.030.

Download references

Acknowledgments

The authors would also like to thank the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq) regarding the scholarships to carry out the research.

Funding

This work was supported by Feevale University. The authors received from the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq) financial support and scholarships to carry out the research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and commented on the previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Alessa Maria Ceratti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceratti, A.M., da Costa, G.M., Alves, D.D. et al. Polycyclic Aromatic Hydrocarbons (PAH) in Atmospheric Particles (PM2.5 and PM2.5–10): Integrated Evaluation of the Environmental Scenario in Urban Areas. Water Air Soil Pollut 232, 30 (2021). https://doi.org/10.1007/s11270-020-04967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04967-3

Keywords

Navigation