Skip to main content

Advertisement

Log in

Influence of Biochar Particle Size and Concentration on Pb and As Availability in Contaminated Mining Soil and Phytoremediation Potential of Poplar Assessed in a Mesocosm Experiment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal(loid)s found at many sites as a result of human activities induce contamination of ecosystems, which threatens the environment and public health. Several approaches can be used in order to reduce such negative impacts of pollutants, and among them, phytoremediation has gained attractive attention. The objective of the present study was to assess the capacity of Populus euramericana, Dorskamp cultivar, for the phytoremediation of metal(loid)s on a technosol (former mining site) highly contaminated mainly with Pb and As, and amended with biochars having different particle sizes. In a 46-day mesocosm glasshouse pot experiment, technosol was mixed at three ratios (0, 2, or 5% w/w) with four different hardwood-derived biochars (with various particle sizes) in order to study the biochar application rate and particle size effects on soil pore water (SPW) characteristics, on poplar growth, and on metal(loid) distribution and concentrations in the plant organs. The results showed that all biochars tested had a significant impact on several SPW physico-chemical parameters. Especially, biochar additions reduced available Pb concentrations but with no effect on As. In such conditions, Populus growth in amended technosol increased whatever rate and particle size of biochar used. Metal(loid) concentrations and repartition in plant organs showed the following: (1) for Pb, a higher root concentration with low aerial part translocation, which depended on biochar used, and (2) for As, mainly a root sequestration. We identified biochar with the finest particle size and combined with P. euramericana, Dorskamp, was the most suitable as remediation tools for Pb stabilization in post-mining contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amoakwah, E., Van Slycken, S., Tack, F., & D, E. (2013). Assessing the extraction efficiency of CaCl2 and Rhizon extraction methods after the application of organic matter and CaCl2 as soil amendments to enhance the mobility of Cd and Zn. Journal of Environmental & Analytical Toxicology, 3, 167–173.

    Google Scholar 

  • Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicacaeae). New Phytologist, 127, 61–68.

    CAS  Google Scholar 

  • Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., & Dugan, B. (2014). Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS One, 9, 1–9.

    Google Scholar 

  • Bart, S., Motelica-Heino, M., Miard, F., Joussein, E., Soubrand, M., Bourgerie, S., & Morabito, D. (2016). Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena, 136, 44–52.

    Google Scholar 

  • Beesley, L., & Dickinson, N. (2010). Carbon and trace element mobility in an urban soil amended with green waste compost. Journal of Soils and Sediments, 10(2), 215–222.

    CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Clemente, R., Lepp, N., & Dickinson, N. (2010). Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158(1), 155–2160.

    CAS  Google Scholar 

  • Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., & Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454-455, 598–603.

    CAS  Google Scholar 

  • Bendfeldt, E. S., Burger, J. A., & Daniels, W. L. (2001). Quality of amended mine soils after sixteen years. Soil Science Society of America Journal, 65(6), 1736–1744.

    CAS  Google Scholar 

  • Bian, R., Chen, D., Liu, X., Cui, L., Li, L., Pan, G., Xie, D., Zheng, J., Zhang, X., Zhang, J., & Chang, A. (2014a). Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecological Engineering, 58, 378–383.

    Google Scholar 

  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S., Chia, C., Marjo, C., Gong, B., Munroe, P., & Donne, S. (2014b). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128.

    CAS  Google Scholar 

  • Blackwell, P., Riethmuller, G., & Collins, M. (2009). Biochar application to soil. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 207–226). London: Earthscan.

  • Blackwell, P., Krull, E., Butler, G., Herbert, A., & Solaiman, Z. (2010). Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Australian Journal of Soil Research, 48, 531–545.

    Google Scholar 

  • Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106, 791–802.

    CAS  Google Scholar 

  • Cottard, F. (2010). Résultats des caractérisations complémentaires effectués sur différents milieux dans le district minier de Pontgibaud, (63). BRGM/RP-58571-FR.

  • R Development Core Team. (2009). R: a language and environment for statistical computing. Vienne: R foundation for statistical Computing.

    Google Scholar 

  • DiBaccio, D., Tognetti, R., Sebastiani, L., & Vitagliano, C. (2003). Responses of Populus deltoides × Populus nigra (Populus × euramericana) clone I-214 to high zinc concentrations. The New Phytologist, 159, 443–452.

    CAS  Google Scholar 

  • Dotaniya, M. L., Dotaniya, C. K., Solanki, P., Meena, V. D., & Doutaniya, R. K. (2020). Lead contamination and its dynamics in soil–plant system. In D. K. Gupta, S. Chatterjee, & C. Walther (Eds.), Lead in plants and the environment (pp. 83–98). Cham: Springer.

    Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: science and technology (pp. 13–32). London: Earthscan.

    Google Scholar 

  • Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. S. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653.

    CAS  Google Scholar 

  • Eykelbosh, A. J., Johnson, M. S., & Couto, E. G. (2015). Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. Journal of Environmental Management, 149, 9–16.

    CAS  Google Scholar 

  • Farooq, M., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R., Yan, G., Siddique, K., & Zhou, W. (2016). Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52.

    CAS  Google Scholar 

  • Fitz, W., & Wenzel, W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99(3), 259–278.

    CAS  Google Scholar 

  • Giachetti, G., & Sebastiani, L. (2006). Metal accumulation in poplar plant grown with industrial wastes. Chemosphere, 64(3), 446–454.

    CAS  Google Scholar 

  • Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31, 669–678.

    CAS  Google Scholar 

  • Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205.

    CAS  Google Scholar 

  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157(10), 2654–2662.

    CAS  Google Scholar 

  • Hettick, B., Cañas-Carrell, J., French, A., & Klein, D. (2015). Arsenic: a review of the element’s toxicity, plant interactions, and potential methods of remediation. Journal of Agricultural and Food Chemistry, 63(32), 7097–7107.

    CAS  Google Scholar 

  • Hossain, M. K., Strezov, V., Yin Chan, K., & Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167–1171.

    CAS  Google Scholar 

  • Houben, D., Couder, E., & Sonnet, P. (2013). Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization. Journal of Soils and Sediments, 13, 543–554.

    CAS  Google Scholar 

  • Igalavithana, A. D., Ok, Y. S., Niazi, N. K., Rizwan, M., Al-Wabel, M. I., Usman, A. R., Moon, D. H., & Lee, S. S. (2017). Effect of corn residue biochar on the hydraulic properties of sandy loam soil. Sustainability, 9(2), 266.

    Google Scholar 

  • Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2015). Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere, 25(5), 770–780.

    Google Scholar 

  • Jakl, M., Jaklovà Dytrtovà, J., Miholovà, D., Kolihovà, D., Szàkovà, J., & Tlustoš, P. (2009). Passive diffusion assessment of cadmium and lead accumulation by plants in hydroponic systems. Chemical Speciation & Bioavailability, 21(2), 111–120.

    CAS  Google Scholar 

  • Jeong, C. Y., Dodla, S. K., & Wang, J. J. (2016). Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere, 142, 4–13.

    CAS  Google Scholar 

  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1–3), 41–48.

    CAS  Google Scholar 

  • Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140(1–2), 309–313.

    CAS  Google Scholar 

  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43.

    CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000.

    CAS  Google Scholar 

  • Komarek, M., Tlustos, P., Szakova, J., Chrastny, V., & Ettler, V. (2007). The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 67(4), 640–651.

    CAS  Google Scholar 

  • Kumar, A., Cabral-Pinto, M. M. S., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., Khan, S. A., & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179.

    CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Management, 28(1), 215–225.

    CAS  Google Scholar 

  • Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131(3), 485–494.

    CAS  Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Léger, J. C., Hattab-Hambli, N., Scippa, G. S., Bourgerie, S., & Morabito, D. (2018). Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere, 194, 316–326.

    CAS  Google Scholar 

  • Lebrun, M., Van Poucke, R., Miard, F., Scippa, G. S., Bourgerie, S., Morabito, D., & Tack, F. M. (2020). Effects of carbon-based materials and redmuds on metal (loid) immobilization and growth of Salix dasyclados Wimm. on a former mine technosol contaminated by arsenic and lead. Land Degradation & Development, 1–15.

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: an introduction. Biochar for environmental management: Science and technology, 1, 1–12.

    Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    CAS  Google Scholar 

  • Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    CAS  Google Scholar 

  • Liu, D., Jiang, W., Liu, C., Xin, C., & Hou, W. (2000). Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresource Technology, 71(3), 273–277.

    CAS  Google Scholar 

  • Liu, Z., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. Journal of Hydrology, 533, 461–472.

    CAS  Google Scholar 

  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment, 191(15), 124–132.

    CAS  Google Scholar 

  • Manikandan, A., Subramanian, K. S., & Pandian, K. (2013). Effect of high energy ball milling on particle size and surface area of adsorbents for efficient loading of fertilizer. An Asian Journal of Soil Science, 8(2), 249–254.

    Google Scholar 

  • Mao, J., Zhang, K., & Chen, B. (2019). Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environmental Pollution, 253, 779–789.

    CAS  Google Scholar 

  • Marchand, L., Mench, M., Marchand, C., Le Coustumer, P., Kolbas, A., & Maalouf, J. P. (2011). Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.). Science of the Total Environment, 411, 146–153.

    Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25, 1414–1419.

    CAS  Google Scholar 

  • Méndez, A., Gómez, G., & Paz-Ferreiro, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359.

    Google Scholar 

  • Moreno-Jiménez, E., Beesley, L., Lepp, N. W., Dickinson, N. M., Hartley, W., & Clemente, R. (2011). Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environmental Pollution, 159(10), 3078–3085.

    Google Scholar 

  • Murakami, M., & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials, 162, 1185–1192.

    CAS  Google Scholar 

  • Murillo, J. M., Maranon, T., Cabrera, F., & López, R. (1999). Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. Science of the Total Environment, 242(1–3), 281–292.

    CAS  Google Scholar 

  • Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research, 48, 638–647.

    CAS  Google Scholar 

  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105–112.

    CAS  Google Scholar 

  • Novak, J. M., Busscher, W. J., Watts, D. W., Amonette, J. E., Ippolito, J. A., Lima, I. M., Gaskin, J., Das, K. C., Steiner, C., Ahmedna, M., Rehrah, D., & Schomberg, H. (2012). Biochars impact on soil-moisture storage in an Ultisol and two Aridisols. Soil Science, 177, 310–320.

    CAS  Google Scholar 

  • Omondi, M., Xia, X., Nahayo, A., Liu, X., Korai, P., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34.

    CAS  Google Scholar 

  • O'Neill, P. (1995). Arsenic. In B. J. Alloway (Ed.), Heavy metals in soils. London: Blackie Academic and Professionals.

    Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75.

    Google Scholar 

  • Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Bianconi, D., & Massacci, A. (2009). Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. International Journal of Phytoremediation, 12, 105–120.

    Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Rodríguez-Vila, A., Forján, R., Guedes, R. S., & Covelo, E. F. (2017). Nutrient phytoavailability in a mine soil amended with technosol and biochar and vegetated with Brassica juncea. Journal of Soils and Sediments, 17(6), 1653–1661.

    Google Scholar 

  • Ruttens, A., Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., & Vangronsveld, J. (2006). Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environmental Pollution, 144, 524–532.

    CAS  Google Scholar 

  • Sáez, J., Belda, R., Bernal, M., & Fornes, F. (2016). Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Industrial Crops and Products, 94, 97–106.

    Google Scholar 

  • Samsuri, A. W., Fahmi, A. H., Jol, H., & Daljit, S. (2019). Particle size and rate of biochar affected the phytoavailability of Cd and Pb by mustard plants grown in contaminated soils. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2019.1687423.

  • Sebastiani, L., Scebba, F., & Tognetti, R. (2004). Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52(1), 79–88.

    CAS  Google Scholar 

  • Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90, 241–247.

    CAS  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270.

    CAS  Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    CAS  Google Scholar 

  • Tognetti, R., Cocozza, C., & Marchetti, M. (2013). Shaping the multifunctional tree: the use of Salicaceae in environmental restoration. iForest, 6, 37–47.

    Google Scholar 

  • Van Poucke, R., Ainsworth, J., Maeseele, M., Ok, Y. S., Meers, E., & Tack, F. M. G. (2018). Chemical stabilization of Cd-contaminated soil using biochar. Applied Geochemistry, 88, 122–130.

    Google Scholar 

  • Wilson-Kokes, L., & Skousen, J. (2014). Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia. Science of the Total Environment, 481, 418–424.

    CAS  Google Scholar 

  • Wu, F., Yang, W., Zhang, J., & Zhou, L. (2010). Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Materials, 177(1–3), 268–273.

    CAS  Google Scholar 

  • Xu, D., Zhao, Y., Sun, K., Gao, B., Wang, Z., Jin, J., Zhang, Z., Wang, S., Yan, Y., Liu, X., & Wu, F. (2014). Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Chemosphere, 111, 302–326.

    Google Scholar 

  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. J., & Stoffella, P. J. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259(1–2), 181–189.

    CAS  Google Scholar 

  • Yang, J., Ma, Z., Ye, Z., Guo, X., & Qiu, R. (2010). Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. Journal of Environmental Sciences, 22(5), 696–702.

    CAS  Google Scholar 

  • Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197, 23–34.

    CAS  Google Scholar 

  • Zheng, R., Chen, Z., Cai, C., Wang, X., Huang, Y., Xiao, B., & Sun, G. (2013). Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources, 8(4), 5965–5982.

    Google Scholar 

  • Zheng, R., Li, C., Sun, G., Xie, Z., Chen, J., Wu, J., & Wang, Q. (2017). The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb and As by Brassica chinensis L. Environmental Science and Pollution Research, 24(28), 22340–22352.

    CAS  Google Scholar 

  • Zhou, R. D., Coles, N., Zhe, K., & Wu, J. (2015). Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil & Tillage Research, 146, 133–138.

    Google Scholar 

Download references

Acknowledgments

The authors thank Carmelo Macri (University of Genoa—Italy) for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bourgerie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Four hardwood-derived biochars with different particle sizes were used to amend a highly contaminated mining soil.

• P. euramericana growth in technosol increased by adding biochar.

• Pb and As in Populus organs accumulated mainly in roots in 46-day mesocosm trial.

• Biochar with the lower particle size was identified as the best remediation amendment combined with P. euramericana in such post mining contaminated soil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebrun, M., Miard, F., Nandillon, R. et al. Influence of Biochar Particle Size and Concentration on Pb and As Availability in Contaminated Mining Soil and Phytoremediation Potential of Poplar Assessed in a Mesocosm Experiment. Water Air Soil Pollut 232, 3 (2021). https://doi.org/10.1007/s11270-020-04942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04942-y

Keywords

Navigation