Skip to main content
Log in

Evaluation of the Bioavailability of Heavy Metals and Phosphorus in Biochar Derived from Manure and Manure Digestate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effects of pyrolysis temperature (350, 450, and 550 °C) on the properties of biochar prepared from chicken manure (CM), dairy manure (DM), and their digestates (CMD and DMD) were investigated in this study. The physicochemical properties and the transformation of phosphorous and heavy metal forms in various types of biochar were analyzed, and the bioavailability was assessed to optimize the pyrolysis condition towards biochar land application. The larger specific surface area was found in CM and CMD derived biochars (14.90–22.45 m2/g), as compared to DM and DMD derived biochars (1.17–7.36 m2/g). The highest contents of total phosphorous (TP) and bioavailable non-apatite inorganic phosphorus (NAIP) were obtained in DMD biochar, i.e., 49.31 and 27.03 mg/g TS, respectively. Cu and Zn are identified as the harmful heavy metal elements in manure derived biochars due to its high level of total concentration. When increasing pyrolysis temperature, the fractions of Zn and Cu in exchangeable-, carbonate-, and the organic-bonded state decreased and the fractions of manganese oxidized and residual state increased. Finally, the citric acid leaching treatment was proposed to decrease the Zn and Cu contents in biochar before land application. The overall leaching rates for Cu and Zn were 37–45% and 27–32%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari, S., Gascó, G., Méndez, A., Surapaneni, A., Jegatheesan, V., Shah, K., & Paz-Ferreiro, J. (2019). Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Science of the Total Environment, 695, 133846.

    Article  CAS  Google Scholar 

  • Akhtar, M., McCallister, D. L., & Eskridge, K. M. (2002). Availability and fractionation of phosphorus in sewage sludge-amended soils. Communications in Soil Science and Plant Analysis, 33(13–14), 2057–2068.

    Article  CAS  Google Scholar 

  • Chen, X., Yang, L., Myneni, S. C. B., & Deng, Y. (2019). Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge-derived biochar. Chemical Engineering Journal, 373, 840–845.

    Article  CAS  Google Scholar 

  • Chen, C., Liu, G., An, Q., Lin, L., Shang, Y., & Wan, C. (2020). From wasted sludge to valuable biochar by low temperature hydrothermal carbonization treatment: Insight into the surface characteristics. Journal of Cleaner Production, 263, 121600.

    Article  CAS  Google Scholar 

  • DNRC (2017) The 13th FYP for Rural Biogas Development (MOA) T. N. D. a. R. C. N. a. t. M. o. A.

  • Figueiredo, C. C. D., Chagas, J. K. M., da Silva, J., & Paz-Ferreiro, J. (2019). Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma, 344, 31–39.

    Article  CAS  Google Scholar 

  • Garlapalli, R. K., Wirth, B., & Reza, M. T. (2016). Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresource Technology, 220, 168–174.

    Article  CAS  Google Scholar 

  • Hall, R. L., Boisen Staal, L., Macintosh, K. A., McGrath, J. W., Bailey, J., Black, L., Gro Nielsen, U., Reitzel, K., & Williams, P. N. (2020). Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma, 362, 114096.

    Article  CAS  Google Scholar 

  • Jiang, B., Lin, Y., & Mbog, J. C. (2018). Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresource Technology, 270, 603–611.

    Article  CAS  Google Scholar 

  • Kim, D., Lee, K., & Park, K. Y. (2014). Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel, 130, 120–125.

    Article  CAS  Google Scholar 

  • Kizito, S., Luo, H., Wu, S., Ajmal, Z., Lv, T., & Dong, R. (2017). Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management, 201, 260–267.

    Article  CAS  Google Scholar 

  • Lang, Q., Chen, M., Guo, Y., Liu, Z., & Gai, C. (2019). Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk. Journal of Environmental Management, 234, 97–103.

    Article  CAS  Google Scholar 

  • Leclerc, A., & Laurent, A. (2017). Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Science of the Total Environment, 590-591, 452–460.

    Article  CAS  Google Scholar 

  • Li, H., Hu, J., Yao, L., Shen, Q., An, L., & Wang, X. (2020a). Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: Competitive adsorption and mechanism studies. Journal of Hazardous Materials, 390, 122127.

    Article  CAS  Google Scholar 

  • Li, H., Li, Y., Xu, Y., & Lu, X. (2020b). Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere, 244, 125471.

    Article  CAS  Google Scholar 

  • Li, Y., Xing, B., Ding, Y., Han, X. & Wang, S. 2020c. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology: 123614.

  • Li, S., Zeng, W., Jia, Z., Wu, G., Xu, H. & Peng, Y. 2020d. Phosphorus species transformation and recovery without apatite in FeCl3-assisted sewage sludge hydrothermal treatment. Chemical Engineering Journal: 125735.

  • Liu, T., Kumar Awasthi, M., Kumar Awasthi, S., Duan, Y., Chen, H., & Zhang, Z. (2019). Effects of clay on nitrogen cycle related functional genes abundance during chicken manure composting. Bioresource Technology, 291, 121886.

    Article  CAS  Google Scholar 

  • Maroušek, J., Kolář, L., Strunecký, O., Kopecký, M., Bartoš, P., Maroušková, A., Cudlínová, E., Konvalina, P., Šoch, M., Moudrý, J., Vaníčková, R., & Vrbka, J. (2020). Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. Journal of Cleaner Production, 272, 123015.

    Article  Google Scholar 

  • Nag, R., Whyte, P., Markey, B. K., O’Flaherty, V., Bolton, D., Fenton, O., Richards, K. G., & Cummins, E. (2020). Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Science of the Total Environment, 710, 136297.

    Article  CAS  Google Scholar 

  • Ngigi, A. N., Ok, Y. S., & Thiele-Bruhn, S. (2019). Biochar-mediated sorption of antibiotics in pig manure. Journal of Hazardous Materials, 364, 663–670.

    Article  CAS  Google Scholar 

  • Peng, W., Lü, F., Hao, L., Zhang, H., Shao, L., & He, P. (2020). Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresource Technology, 297, 122485.

    Article  CAS  Google Scholar 

  • Pouliot, R., Hugron, S., Rochefort, L., Godbout, S., Palacios, J. H., Groeneveld, E., & Jarry, I. (2015). Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration. Journal of Environmental Management, 157, 118–126.

    Article  CAS  Google Scholar 

  • Qian, T.-T., & Jiang, H. (2014). Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustainable Chemistry & Engineering, 2(6), 1411–1419.

    Article  CAS  Google Scholar 

  • Shin, H., Tiwari, D., & Kim, D. J. (2020). Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 37, 101484.

    Article  Google Scholar 

  • Song, C., Li, M., Xi, B., Wei, Z., Zhao, Y., Jia, X., Qi, H., & Zhu, C. (2015). Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques. International Biodeterioration & Biodegradation, 103, 38–50.

    Article  CAS  Google Scholar 

  • Stefaniuk, M., & Oleszczuk, P. (2015). Characterization of biochars produced from residues from biogas production. Journal of Analytical and Applied Pyrolysis, 115, 157–165.

    Article  CAS  Google Scholar 

  • Wang, Y., & Liu, R. (2017). Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Processing Technology, 160, 55–63.

    Article  CAS  Google Scholar 

  • Wang, H., Dong, Y., Yang, Y., Toor, G. S., & Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences, 25(12), 2435–2442.

    Article  CAS  Google Scholar 

  • Wang, X., Li, C., Zhang, B., Lin, J., Chi, Q., & Wang, Y. (2016). Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis. Bioresource Technology, 221, 560–567.

    Article  CAS  Google Scholar 

  • Wang, H., Fan, X., Wang, Y.-N., Li, W., Sun, Y., Zhan, M., & Wu, G. (2018). Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid. Journal of Environmental Management, 208, 15–23.

    Article  CAS  Google Scholar 

  • Weng, H.-X., Ma, X.-W., Fu, F.-X., Zhang, J.-J., Liu, Z., Tian, L.-X., & Liu, C. (2014). Transformation of heavy metal speciation during sludge drying: Mechanistic insights. Journal of Hazardous Materials, 265, 96–103.

    Article  CAS  Google Scholar 

  • Xu, G., Zhang, Y., Shao, H., & Sun, J. (2016). Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Science of the Total Environment, 569-570, 65–72.

    Article  CAS  Google Scholar 

  • Xu, Y., Bai, T., Yan, Y., & Ma, K. (2020). Influence of sodium hydroxide addition on characteristics and environmental risk of heavy metals in biochars derived from swine manure. Waste Management, 105, 511–519.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xu, S., Cui, M., & Wong, J. W. C. (2019). Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Management, 94, 68–76.

    Article  CAS  Google Scholar 

  • Zhang, P., Zhang, X., Li, Y., & Han, L. (2020). Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresource Technology, 302, 122850.

    Article  CAS  Google Scholar 

  • Zhou, X., Qiao, M., Su, J.-Q., Wang, Y., Cao, Z.-H., Cheng, W.-D., & Zhu, Y.-G. (2019). Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. Science of the Total Environment, 649, 902–908.

    Article  CAS  Google Scholar 

  • Zhu, N.-M., Qiang, L., Guo, X.-J., Hui, Z., & Yu, D. (2014). Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicology and Environmental Safety, 102, 18–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this study could like to thank the sponsors from Central Public-interest Scientific Institution Basal Research Fund (No. BSRF201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyun Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Lin, R., Shi, Q. et al. Evaluation of the Bioavailability of Heavy Metals and Phosphorus in Biochar Derived from Manure and Manure Digestate. Water Air Soil Pollut 231, 553 (2020). https://doi.org/10.1007/s11270-020-04924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04924-0

Keywords

Navigation