Skip to main content
Log in

Comparison of Organic Materials for the Passive Treatment of Synthetic Neutral Mine Drainage Contaminated by Nickel: Adsorption and Desorption Kinetics and Isotherms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sorption is an effective process for the remediation of mine water with low metal concentrations. To identify promising low-cost organic sorbents for nickel (Ni), adsorption and retention properties of peat, compost, brown algae, sawdust, and wood ash were compared. Batch adsorption and desorption experiments were conducted at pH 7 in 0.05 M NaNO3 solutions to simulate the ionic strength and pH of a contaminated neutral drainage. Results of adsorption kinetic experiments were best represented by the Elovich model and the fastest rates were obtained with peat (796,075 mg g−1 min−1) and compost (791 mg g−1 min−1). Results of equilibration adsorption experiments were fitted to Langmuir and Freundlich isotherms and the highest adsorption capacities were observed for peat (around 22 mg g−1) and compost (around 9 mg g−1). Desorption experiments revealed that peat and compost adsorbed more Ni and also released a lower percentage of the adsorbed metal upon exposure to Ni-free solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison, J., Brown, D. S., Novo-Gradac, K. J. (2011). MINTEQA2/PRODEFA2, a geochemical assesment model for environmental systems: version 3.0 user’s manual.

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Arán, D., Antelo, J., Lodeiro, P., Macías, F., & Fiol, S. (2017). Use of waste-derived biochar to remove copper from aqueous solution in a continuous-flow system. Industrial and Engineering Chemistry Research, 56, 12755–12762. https://doi.org/10.1021/acs.iecr.7b03056.

    Article  CAS  Google Scholar 

  • Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25, 7823–7833. https://doi.org/10.1007/s11356-017-1115-7.

    Article  CAS  Google Scholar 

  • Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18, 1501–1507.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Calugaru, I. L., Neculita, C. M., Genty, T., & Zagury, G. J. (2018). Metals and metalloids treatment in contaminated neutral effluents using modified materials. Journal of Environmental Management, 212, 142–159. https://doi.org/10.1016/j.jenvman.2018.02.002.

    Article  CAS  Google Scholar 

  • CEAEQ (2013). Détermination du carbone et du soufre: méthode par combustion et dosage par spectrophotométrie infrarouge, Méthode MA.310-CS 1.0. http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA310CS10.pdf. Accessed 2019-06-18 2019.

  • Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals - an overview. Indian Journal of Biotechnology, 7, 159–169.

    CAS  Google Scholar 

  • Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8.

    Article  CAS  Google Scholar 

  • Fourest, E., & Volesky, B. (1996). Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science and Technology, 30, 277–282. https://doi.org/10.1021/es950315s.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1907). Über die adsorption in lösungen Zeitschrift für physikalische. Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gustafsson, J. P. (2016). Visual MINTEQ ver. 3.0. https://vminteq.lwr.kth.se/. Accessed 2018-01-15 2018.

  • Guthrie, J. W., et al. (2005). Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Analytica Chimica Acta, 528, 205–218. https://doi.org/10.1016/j.aca.2004.10.003.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (1995). Adsorption of heavy metals from waste streams by peat. Ph. D. Thesis, University of Brimingham, Brimingham (UK).

  • Iakovleva, E., & Sillanpaa, M. (2013). The use of low-cost adsorbents for wastewater purification in mining industries. Environmental Science and Pollution Research, 20, 7878–7899. https://doi.org/10.1007/s11356-013-1546-8.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., Fyrillas, M. M., & Park, J. (2019). Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equations. Journal of Hazardous Materials, 367, 224–245. https://doi.org/10.1016/j.jhazmat.2018.12.023.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Mandal, R., Hassan, N. M., Murimboh, J., Chakrabarti, C. L., Back, M. H., Rahayu, U., & Lean, D. R. S. (2002). Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada). Environmental Science and Technology, 36, 1477–1484. https://doi.org/10.1021/es015622e.

    Article  CAS  Google Scholar 

  • McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • McLintock, I. S. (1967). The Elovich equation in chemisorption kinetics. Nature, 216, 1204–1205.

    Article  CAS  Google Scholar 

  • MDDELCC (2012) Directive 019 sur l’industrie minière. Ministère du Développement Durable, Environnement et Lutte contre les Changements Climatiques du Québec. http://www.mddelcc.gouv.qc.ca/milieu_ind/directive019/. Accessed 2019-06-18.

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr., C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120.

    Article  CAS  Google Scholar 

  • Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65, 149–161. https://doi.org/10.1111/ejss.12107.

    Article  CAS  Google Scholar 

  • Roginsky, S. Z., & Zeldovich, J. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physicochimica USSR, 1, 554.

    Google Scholar 

  • Stokes, P. (1988). Nickel in aquatic systems. In H. Sigel & A. Sigel (Eds.), Metal ions in biological systems: nickel and its role in biology, vol 23 (pp. 31–46). New York: Marcel Dekker.

    Google Scholar 

  • Stumm, W., & Morgan, J. (1996). Aquatic chemistry : chemical equilibria and rates in natural waters. Environmental Science and Technology (3rd ed.). New York: Wiley.

    Google Scholar 

  • Tan, K. H. (2014). Humic matter in soil and the environment: principles and controversies (2nd ed.). Boca Raton: CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  • Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024.

    Article  CAS  Google Scholar 

  • Tong, X.-j., Li, J.-y., Yuan, J.-h., & Xu, R.-k. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172, 828–834. https://doi.org/10.1016/j.cej.2011.06.069.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510. https://doi.org/10.1021/jf104206c.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technology, 99, 3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011.

    Article  CAS  Google Scholar 

  • Westholm, L. J., Repo, E., & Sillanpaa, M. (2014). Filter materials for metal removal from mine drainage-a review. Environmental Science and Pollution Research, 21, 9109–9128. https://doi.org/10.1007/s11356-014-2903-y.

    Article  CAS  Google Scholar 

  • Xiao, Y., Azaiez, J., & Hill, J. M. (2018). Erroneous application of pseudo-second-order adsorption kinetics model: ignored assumptions and spurious correlations. Industrial and Engineering Chemistry Research, 57, 2705–2709. https://doi.org/10.1021/acs.iecr.7b04724.

    Article  CAS  Google Scholar 

  • Xu, X., Cao, X., Zhao, L., Zhou, H., & Luo, Q. (2014). Interaction of organic and inorganic fractions of biochar with Pb(II) ion: further elucidation of mechanisms for Pb(II) removal by biochar. RSC Advances, 4, 44930–44937. https://doi.org/10.1039/c4ra07303g.

    Article  CAS  Google Scholar 

  • Xue, H. B., Jansen, S., Prasch, A., & Sigg, L. (2001). Nickel speciation and complexation kinetics in freshwater by ligand exchange and DPCSV. Environmental Science and Technology, 35, 539–546. https://doi.org/10.1021/es0014638.

    Article  CAS  Google Scholar 

  • Zhou, Y. F., & Haynes, R. J. (2010). Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Critical Reviews in Environmental Science and Technology, 40, 909–977. https://doi.org/10.1080/10643380802586857.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the NSERC (Natural Sciences and Engineering Research Council of Canada), grant no. 469489-14, and the industrial partners of the RIME UQAT Polytechnique Montreal, including Agnico Eagle, Mine Canadian Malartic, Iamgold, Raglan Mine Glencore, and Rio Tinto. D.R., also wishes to acknowledge support from the “Fonds de recherche Nature et technologies” (FQRNT) graduate scholarship program and from the “Fondation et alumni de Polytechnique Montréal” (Bourse Banque de Montréal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald J. Zagury.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, D., Mucci, A., Neculita, C.M. et al. Comparison of Organic Materials for the Passive Treatment of Synthetic Neutral Mine Drainage Contaminated by Nickel: Adsorption and Desorption Kinetics and Isotherms. Water Air Soil Pollut 231, 556 (2020). https://doi.org/10.1007/s11270-020-04917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04917-z

Keywords

Navigation