Skip to main content
Log in

Preparation of Electrospun Hydroxyapatite-Glass Fibers for Removal of Cadmium (Cd+2) and Lead (Pb+2) from Aqueous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Hydroxyapatite-silica fibers were prepared by sol-gel process and electrospinning, and their capacity for adsorption of cadmium and lead ions in aqueous solution was studied. The samples were characterized by SEM, FTIR, TGA, DSC, BET, and XRD. The composite consists on a network of continuous rough fibers with mean diameter of 150 ± 40 nm after thermal treatment. The fibers present a mesoporous structure with pore size of 15.75 nm. Fourier transformed infrared spectroscopy and X-ray diffraction demonstrated the presence of crystalline hydroxyapatite and amorphous silica. Adsorption process is represented by Freundlich isotherm, while the adsorption kinetics follow the pseudo-second-order model. The capacity shown by the fibrous material for the removal of lead ions (466.98 mg/g) was five times higher than the capacity observed for the adsorption of cadmium (93.30 mg/g). Therefore, the hydroxyapatite-silica electrospun fibers represent a suitable material for the efficient removal of lead and cadmium ions from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-aziz, A. M., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol nanofiber (PVA)/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian Journal of Chemistry, 10, 1052–1060.

    Article  CAS  Google Scholar 

  • Aliabadi, M., Irani, M., Ismaeili, J., & Najafzadeh, S. (2014). Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 45, 518–526.

    Article  CAS  Google Scholar 

  • Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science. The physics and chemistry of sol-gel processing. San Diego: Academic Press, Inc.

    Google Scholar 

  • Chand, P., & Pakade, Y. B. (2015). Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environmental Science and Pollution Research, 22, 10919–10929.

    Article  CAS  Google Scholar 

  • Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90–96.

    Article  CAS  Google Scholar 

  • Choi, S., & Jeong, Y. (2008). The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite. Fibers and Polymers, 9(3), 267–270.

    Article  CAS  Google Scholar 

  • Dai, Y., Liu, W., Formo, E., Sun, Y., & Xia, Y. (2011). Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polymers for Advanced Technologies, 22, 326–338.

    Article  CAS  Google Scholar 

  • Esfahani, H., Jose, R., & Ramakrishna, S. (2017). Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials, 10, 1238.

    Article  Google Scholar 

  • Franco, P. Q., João, C. F. C., Silva, J. C., & Borge, J. P. (2012). Electrospun hydroxyapatite fibers from simple sol-gel system. Materials Letters, 67, 233–236.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Garibay-Alvarado, J. A., Espinosa-Cristóbal, L. F., & Reyes-López, S. Y. (2017). Fibrous silica-hydroxyapatite composite by electrospinning. International Journal of Research-Granthaalayah, 5, 39–47.

    Article  Google Scholar 

  • Garibay-Alvarado, J. A., Farias, R., & Reyes-López, S. Y. (2019). Sol-gel and electrospinning synthesis of lithium niobate-silica nanofibers. Coatings, 9, 212.

    Article  CAS  Google Scholar 

  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2012). Adsorptive removal of Pb+2, Cd+2 and Ni+2 by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 43, 125–131.

    Article  CAS  Google Scholar 

  • Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90, 33–72.

    Article  CAS  Google Scholar 

  • Iconaru, S. L., Motelica-Heino, M., Guegan, R., Beuran, M., Costescu, A., & Predoi, D. (2018). Adsorption of Pb(II) ions onto hydroxyapatite nanopowders in aqueous solutions. Materials, 11, 2204.

    Article  Google Scholar 

  • Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research, 62, 600–612.

    Article  CAS  Google Scholar 

  • Lee, J. H., & Kim, Y. J. (2014). Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceramics International, 40, 3361–3369.

    Article  CAS  Google Scholar 

  • Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16, 1151–1170.

    Article  CAS  Google Scholar 

  • Martínez-Hernández, A. M., & Reyes-López, S. Y. (2017). Development of a composite of poly-ε-caprolactone-cerium oxide. International Journal of Research-Granthaalayah, 5, 493–505.

    Google Scholar 

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb+2, Cd+2 and Ni+2 by nanocrystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arabian Journal of Chemistry, 5, 439–446.

    Article  CAS  Google Scholar 

  • Park, S., Gomez-Flores, A., Chung, Y. S., & Kim, H. (2015). Removal of cadmium and lead from aqueous solution by hydroxyapatite/chitosan hybrid fibrous sorbent: kinetics and equilibrium studies. Journal of Chemistry, 2015, 1–12. https://doi.org/10.1155/2015/396290

  • Pazos-Ortiz, E., Roque-Ruiz, J. H., Hinojos-Márquez, E. A., López-Esparza, J., Donohue-Cornejo, A., Cuevas-González, J. C., et al. (2017). Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. Journal of Nanomaterials, 2017, 1–9. https://doi.org/10.1155/2017/4752314.

  • Persson, I. (2010). Hydrated metal ions in aqueous solution: how regular are their structures? Pure and Applied Chemistry, 82, 1901–1917.

    Article  CAS  Google Scholar 

  • Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., & Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zheijiang University-SCIENCE A, 10, 716–724.

    Article  CAS  Google Scholar 

  • Ramdani, A., Kadeche, A., Adjdir, M., Taleb, Z., Ikhou, D., Taleb, S., & Deratani, A. (2020). Lead and cadmium removal by adsorption process using hydroxyapatite porous materials. Water Practice Technology, 15(1), 130–141.

    Article  Google Scholar 

  • Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., Torres-Pérez, J., & Reyes-López, S. Y. (2016a). Preparation of PCL/clay and PVA/clay electrospun fibers for cadmium (Cd+2), chromium (Cr+3), copper (Cu+2) and Lead (Pb+2) removal from water. Water, Air, & Soil Pollution, 227, 286.

    Article  Google Scholar 

  • Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., González-García, G., & Reyes-López, S. Y. (2016b). Thermal degradation of aluminum formate sol-gel; synthesis of α-alumina and characterization by 1H, 13C and 27Al MAS NMR and XRD spectroscopy. Results in Physics, 6, 1096–1102.

    Article  Google Scholar 

  • Roque-Ruiz, J. H., Martínez-Máynez, H., Zalapa-Garibay, M. A., Arizmendi-Morquecho, A., Farias, R., & Reyes-López, S. Y. (2017). Surface enhanced Raman spectroscopy in nanofibers mats of SiO2-TiO2-Ag. Results in Physics, 7, 2520–2527.

    Article  Google Scholar 

  • Roque-Ruiz, J. H., Meraz-Ángel, J., Farias, R., Meléndez-Lira, M., & Reyes-López, S. Y. (2019a). Sol-gel synthesis of strontium titanante nanofibers by electrospinning. Journal of Ceramic Science and Technology, 10, 29–38.

    Google Scholar 

  • Roque-Ruiz, J. H., Medellín-Castillo, N. A., & Reyes-López, S. Y. (2019b). Fabrication of α-alumina fibers by sol-gel and electrospinning of aluminum nitrate precursor solutions. Results in Physics, 12, 193–204.

    Article  Google Scholar 

  • Safatian, F., Doago, Z., Torabbeigi, M., Shams, H. R., & Ahadi, N. (2019). Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation. Applied Water Science, 9, 108.

    Article  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  CAS  Google Scholar 

  • Smith, D. W. (1977). Ionic hydration enthalpies. Journal of Chemical Education, 54, 540–542.

    Article  CAS  Google Scholar 

  • Wu, Y., Hench, L. L., Du, J., & Choy, K. L. (2004). Preparation of hydroxyapatite fibers by electrospinning technique. Journal of the American Ceramic Society, 87, 1988–1991.

    Article  CAS  Google Scholar 

  • Yi, Z., Wang, K., Tian, J., Shu, Y., Yang, J., Xiao, W., Li, B., & Liao, X. (2016). Hierarchical porous hydroxyapatite fibers with a hollow structure as drug delivery carriers. Ceramics International, 42, 19079–19085.

    Article  CAS  Google Scholar 

  • Zhang, Z., Li, M., Chen, W., Zhu, S., Liu, N., & Zhu, L. (2010). Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environmental Pollution, 158, 514–519.

    Article  CAS  Google Scholar 

  • Zhang, H., Fu, Q. F., Sun, T. W., Chen, F., Qi, C., Wu, J., Cai, Z. Y., Qian, Q. R., & Zhu, Y. J. (2015). Amorphous calcium phosphate, hydroxyapatite and poly (D, L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Colloids and Surfaces B: Biointerfaces, 136, 27–36.

    Article  CAS  Google Scholar 

  • Zhou, Y., Li, S., Wang, D., & Han, X. (2019). Electrospinning synthesis of hydroxyapatite nanofibers assembled from nanorods and their adsorption for heavy metal ions. Polish Journal of Environmental Studies, 28, 981–988.

    Article  CAS  Google Scholar 

Download references

Funding

PRODEP, Universidad Autónoma de Ciudad Juárez and CONACYT provided funding this investigation.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: J. H. R. R. and J. A. G. A.; formal analysis: J. H. R. R., J. A. G. A. and N. A. M. C.; writing—original draft: J. H. R. R.; methodology: N. A. M. C. and S. Y. R. L.; resources: N. A. M. C. and S. Y. R. L.; conceptualization: S. Y. R. L.; writing—review and editing: S. Y. R. L.; funding acquisition: S. Y. R. L.

Corresponding author

Correspondence to Simón Yobanny Reyes-López.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roque-Ruiz, J.H., Garibay-Alvarado, J.A., Medellín-Castillo, N.A. et al. Preparation of Electrospun Hydroxyapatite-Glass Fibers for Removal of Cadmium (Cd+2) and Lead (Pb+2) from Aqueous Media. Water Air Soil Pollut 231, 497 (2020). https://doi.org/10.1007/s11270-020-04856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04856-9

Keywords

Navigation