Skip to main content

Advertisement

Log in

Determination of Climate Change Effects of Impervious Areas in Urban Watershed

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The earth’s energy balance is changing as a result of the release of large amounts of greenhouse gases and aerosols. Climate change impacts on water sources, especially surface water affects hydrologic processes. In this study, the effects of impervious areas of Eskişehir, a city in the Porsuk Stream Watershed in Western Inner Anatolia of Turkey, to the Porsuk Stream pollution has been modeled using climate change scenarios until 2100. For the identification of these effects the HSPF model (Hydrological Simulation Program-Fortran) developed by United States Environment Protection Agency-EPA has been used. The most significant parameters in surface water, orthophosphate, nitrate, chloride, total coliform, sediment have been modeled using A1, A2, and B2 scenarios. The scenarios are Special Report on Emissions Scenarios (SRES) reported by the Intergovernmental Panel on Climate Change (IPCC). It has been determined that, based on these scenarios, until 2100, these water pollution parameter concentrations in outflow will be increased in the Porsuk Stream. Thus, the effects of impervious areas of urban centers on water quality have been shown to be significant with 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed, S. I., Singh, A., Rudra, R., & Gharabaghi, B. (2014). Comparison of CANWET and HSPF for water budget and water quality modeling in rural Ontario. Water Quality Research Journal of Canada, 49(1), 53–71. https://doi.org/10.2166/wqrjc.2013.044.

    Article  CAS  Google Scholar 

  • Alam, M. J., & Dutta, D. (2013). Predicting climate change impact on nutrient pollution in waterways: a case study in the upper catchment of the Latrobe River, Australia. Ecohydrology, 6(1), 73–82. https://doi.org/10.1002/Eco.282.

    Article  CAS  Google Scholar 

  • Albek, E. (2003). Estimation of point and diffuse contaminant loads to streams by non-parametric regression analysis of monitoring data. Water Air and Soil Pollution, 147(1-4), 229–243. https://doi.org/10.1023/A:1024592815576.

    Article  CAS  Google Scholar 

  • Albek, M., & Albek, E. (2003). Use of HSPF in estimating future influences of climate change on watersheds. River Basin Management Ii, 7, 55–65.

  • Albek, M., Ogutveren, U. B., & Albek, E. (2004). Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. Journal of Hydrology, 285(1–4), 260–271. https://doi.org/10.1016/j.jhydrol.2003.09.002.

    Article  Google Scholar 

  • Albek, M., Albek, E. A., Goncu, S., & Uygun, B. S. (2019). Ensemble streamflow projections for a small watershed with HSPF model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06749-9.

  • Amirsalari, F., Li, J., Guan, X., & Booty, W. G. (2013). Investigation of correlation between remotely sensed impervious surfaces and chloride concentrations. International Journal of Remote Sensing, 34(5), 1507–1525. https://doi.org/10.1080/01431161.2012.713141.

    Article  Google Scholar 

  • Azari, M., Moradi, H. R., Saghafian, B., & Faramarzi, M. (2016). Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 61(1), 123–133. https://doi.org/10.1080/02626667.2014.967695.

    Article  Google Scholar 

  • Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79–89. https://doi.org/10.1016/j.ecolind.2014.11.003.

    Article  CAS  Google Scholar 

  • Fisher, I. H., Rahman, M., Jivajirajah, J. T., & Salbe, I. (1993). Hspf water-quality modeling on South Creek. Hydrology and Water Resources Symposium - Towards the 21st Century, 355-360.

  • Göncü, S., & Albek, E. (2015). Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey. Theoretical and Applied Climatology, 1–21. https://doi.org/10.1007/s00704-015-1563-2.

  • Goncu, S., & Albek, E. (2016). Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey. Theoretical and Applied Climatology, 126(1–2), 191–211. https://doi.org/10.1007/s00704-015-1563-2.

    Article  Google Scholar 

  • Huo, S. C., Lo, S. L., Chiu, C. H., Chiueh, P. T., & Yang, C. S. (2015). Assessing a fuzzy model and HSPF to supplement rainfall data for nonpoint source water quality in the Feitsui reservoir watershed. Environmental Modelling & Software, 72, 110–116. https://doi.org/10.1016/j.envsoft.2015.07.002.

    Article  Google Scholar 

  • Jeon, J. H., Yoon, C. G., Jung, K. W., & Jang, J. H. (2007). HSPF-Paddy simulation of water flow and quality for the Saemangeum watershed in Korea. Water Science and Technology, 56(1), 123–130. https://doi.org/10.2166/wst.2007.443.

    Article  CAS  Google Scholar 

  • Jeon, J. H., Lim, K. J., Yoon, C. G., & Engel, B. A. (2011). Multiple segmented reaches per subwatershed modeling approach for improving HSPF-Paddy water quality simulation. Paddy and Water Environment, 9(2), 193–205. https://doi.org/10.1007/s10333-010-0218-2.

    Article  Google Scholar 

  • Kim, S., Seo, D. J., Riazi, H., & Shin, C. (2014). Improving water quality forecasting via data assimilation - application of maximum likelihood ensemble filter to HSPF. Journal of Hydrology, 519, 2797–2809. https://doi.org/10.1016/j.jhydrol.2014.09.051.

    Article  CAS  Google Scholar 

  • Kim, H., Jeong, H., Jeon, J., & Bae, S. (2016). The impact of impervious surface on water quality and its threshold in Korea. Water, 8(4). https://doi.org/10.3390/W8040111.

  • King, L. M., Irwin, S., Sarwar, R., McLeod, A. I., & Simonovic, S. P. (2012). The effects of climate change on extreme precipitation events in the upper Thames River basin: a comparison of downscaling approaches. Canadian Water Resources Journal, 37(3), 253–274. https://doi.org/10.4296/Cwrj2011-938.

    Article  Google Scholar 

  • Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X. G., & Hennon, P. (2013). Probable maximum precipitation and climate change. Geophysical Research Letters, 40(7). https://doi.org/10.1002/Grl.50334.

  • Lee, S. B., Yoon, C. G., Jung, K. W., & Hwang, H. S. (2010). Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Science and Technology, 62(6), 1401–1409. https://doi.org/10.2166/wst.2010.302.

    Article  Google Scholar 

  • Liu, Z., & Tong, S. T. Y. (2011). Using HSPF to model the hydrologic and water quality impacts of riparian land-use change in a small watershed. Journal of Environmental Informatics, 17(1), 1–14.

    Article  CAS  Google Scholar 

  • Liu, Y. L., Zhang, J. Y., Wang, G. Q., Liu, J. F., He, R. M., Wang, H. J., et al. (2012). Quantifying uncertainty in catchment-scale runoff modeling under climate change (case of the Huaihe River, China). Quaternary International, 282, 130–136. https://doi.org/10.1016/j.quaint.2012.04.029.

    Article  Google Scholar 

  • Ma, W. X., Huang, T. L., Li, X., Zhang, H. H., & Ju, T. (2015). Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir. Environmental Science and Pollution Research International, 22(23), 18372–18380. https://doi.org/10.1007/s11356-015-4764-4.

    Article  CAS  Google Scholar 

  • Mancinelli, E., Baltrenaite, E., Baltrenas, P., Paliulis, D., Passerini, G., & Almas, A. R. (2015). Trace metal concentration and speciation in storm water runoff on impervious surfaces. Journal of Environmental Engineering and Landscape Management, 23(1), 15–27. https://doi.org/10.3846/16486897.2014.936441.

    Article  Google Scholar 

  • Nielsen, J. L., & Ruggerone, G. T. (2009). Climate change and a dynamic ocean carrying capacity: growth and survival of Pacific salmon at sea. Pacific salmon environmental and life history models: advancing science for sustainable salmon in the future, 71, 77–96.

    Google Scholar 

  • O'Gorman, P. A. (2012). Sensitivity of tropical precipitation extremes to climate change. Nature Geoscience, 5(10), 697–700. https://doi.org/10.1038/Ngeo1568.

    Article  CAS  Google Scholar 

  • Oguz, T., Cokacar, T., Malanotte-Rizzoli, P., & Ducklow, H. W. (2003). Climatic warming and accompanying changes in the ecological regime of the Black Sea during 1990s. Global Biogeochemical Cycles, 17(3). https://doi.org/10.1029/2003gl002031.

  • Paul, S., Haan, P. K., Matlock, M. D., Mukhtar, S., & Pillai, S. D. (2004). Analysis of the HSPF water quality parameter uncertainty in predicting peak in-stream fecal coliform concentrations. Transactions of the Asae, 47(1), 69–78.

    Article  Google Scholar 

  • Rolle, K., Gitau, M. W., Chen, G., & Chauhan, A. (2012). Assessing fecal coliform fate and transport in a coastal watershed using HSPF. Water Science and Technology, 66(5), 1096–1102. https://doi.org/10.2166/wst.2012.282.

    Article  CAS  Google Scholar 

  • Shirinian-Orlando, A. A., & Uchrin, C. G. (2007). Modeling the hydrology and water quality using BASINS/HSPF for the upper Maurice River watershed, New Jersey. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 42(3), 289–303. https://doi.org/10.1080/10934520601134254.

    Article  CAS  Google Scholar 

  • Shiu, C. J., Liu, S. C., Fu, C. B., Dai, A. G., & Sun, Y. (2012). How much do precipitation extremes change in a warming climate. Geophysical Research Letters, 39. https://doi.org/10.1029/2012gl052762.

  • Sidhu, J. P. S., Hodgers, L., Ahmed, W., Chong, M. N., & Toze, S. (2012). Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Research, 46(20), 6652–6660. https://doi.org/10.1016/j.watres.2012.03.012.

    Article  CAS  Google Scholar 

  • Tolika, C. K., Zanis, P., & Anagnostopoulou, C. (2012). Regional climate change scenarios for Greece: future temperature and precipitation projections from ensembles of Rcms. Global NEST Journal, 14(4), 407–421.

    Google Scholar 

  • Trowbridge, P. R., Kahl, J. S., Sassan, D. A., Heath, D. L., & Walsh, E. M. (2010). Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams. Environmental Science & Technology, 44(13), 4903–4909. https://doi.org/10.1021/es100325j.

    Article  CAS  Google Scholar 

  • Uygun, B. S., & Albek, M. (2015). Determination effects of impervious areas on urban watershed. Environmental Science and Pollution Research, 22(3), 2272–2286. https://doi.org/10.1007/s11356-014-3345-2.

    Article  Google Scholar 

  • van der Pol, T. D., van Ierland, E. C., Gabbert, S., Weikard, H. P., & Hendrix, E. M. T. (2015). Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. Journal of Environmental Management, 154, 40–47. https://doi.org/10.1016/j.jenvman.2015.02.016.

    Article  Google Scholar 

  • Wu, Z. Y., Xiao, H., Lu, G. H., & Chen, J. M. (2015). Assessment of climate change effects on water resources in the Yellow River Basin, China. Advances in Meteorology. Doi https://doi.org/10.1155/2015/816532.

  • Yan, C. A., Zhang, W. C., & Zhang, Z. J. (2014). Hydrological modeling of the Jiaoyi watershed (China) using HSPF model. Scientific World Journal. https://doi.org/10.1155/2014/672360.

  • Zhang, C., Lai, S., Gao, X., & Xu, L. (2015). Potential impacts of climate change on water quality in a shallow reservoir in China. Environmental Science and Pollution Research International, 22(19), 14971–14982. https://doi.org/10.1007/s11356-015-4706-1.

    Article  CAS  Google Scholar 

Download references

Funding

This study has been funded by TÜBİTAK (The Scientific and Technological Research Council of Turkey) under project no. 108Y091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Şimşek Uygun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek Uygun, B., Albek, M. Determination of Climate Change Effects of Impervious Areas in Urban Watershed. Water Air Soil Pollut 231, 446 (2020). https://doi.org/10.1007/s11270-020-04821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04821-6

Keywords

Navigation