Skip to main content
Log in

Origin of Aluminium in the Raw Drinking Water of Sofia City, Bulgaria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, the concentration of aluminium in the Iskar River occasionally exceeds the environmental quality standard (EQS). The river and the Iskar Dam, build on the river, are the main drinking water source of Sofia city (Bulgaria), with population exceeding 1.2 million. The average concentrations of aluminium in the raw water entering the drinking water treatment plants of Sofia city—Bistritza and Pancharevo—in 2018 were 0.148 mg/L and 0.199 mg/L, respectively, which are very close to the limits set in Directive 98/83/EC. This study uses multifactorial analysis, taking into account the influence of the mineral and chemical composition of sediments of the Iskar Dam, the geological conditions at the dam’s catchment area, the relationship between the aluminium concentrations and precipitation in the region and also the relationship between the aluminium concentration and the turbidity at the inlet of the two treatment plants, to determine the origin of aluminium in the raw drinking water of Sofia city. The obtained linear regression models for the aluminium concentration and the turbidity at the inlet are significant (p ≤ 0.001) with coefficients of determination (R2) for DWTP–Bistritza and DWTP–Pancharevo of 0.54 and 0.51, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angelova, I., Ivanov, I., Venelinov, T. and Lazarova, S. (2019) Occurrence of aluminium in urban water supply and sewerage systems, SGEM 2019 conference proceedings, 19(5.1.), 501-508.

  • Armstrong, L. (1940). Decomposition and alteration of feldspars and spodumene by water. American Mineralogist, 25, 810–820.

    CAS  Google Scholar 

  • Council of the European Union. (1998). Council directive 98/83/EC on the quality of water intended for human consumption. OJ. L., 330, 32–54.

    Google Scholar 

  • DeKimpe, C., Gastuche, M., & Brindley, G. (1961). Ionic coordination in alumino-silicic acids in relation to clay mineral formation. American Mineralogist, 46(11–12), 1370–1381.

    CAS  Google Scholar 

  • Frankowski, M., Sobczynski, T., & Zioła, A. (2005). The effect of grain size structure on the content of heavy metals in alluvial sediments of the Odra river. Polish Journal of Environmental Studies, 14, 81–86.

    Google Scholar 

  • Frankowski, M., Zioła, A., Siepak, M., & Siepak, J. (2008). Analysis of heavy metals in particular granulometric fractions of bottom sediments in the Mała Wełna River (Poland). Polish Journal of Environmental Studies, 17, 343–350.

    CAS  Google Scholar 

  • Frankowski, M., Zioła-Frankowska, A., Kowalski, A., & Siepak, J. (2010). Fractionation of heavy metals in bottom sediments using Tessier procedure. Environment and Earth Science, 60, 1165–1178.

    Article  CAS  Google Scholar 

  • Habs, H., Simon, B., Thiedemann, K. U., & Howe, P. (1997). Aluminium, environmental health criteria 194. World Health Organization, WHO Library Cataloguing in Publication Data, Geneva.

  • Huang, P., Wang, M. (2005) Minerals, PRIMARY. in Encyclopedia of Soils in the Environment. Academic Press, Cambridge, USA.

  • ISO 11885. (2007). Water quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Geneva: ISO.

    Google Scholar 

  • Jekel, M. (1991) Aluminum in water: How it can be removed? Use of aluminum salts in treatment. Proc. of the Int. water supply ass. Copenhagen, Denmark, may 25-31.

  • Kabata-Pendias, A., & Pendias, H. (2000). Trace elements in soils and plants. Boca Raton, London, New York, Washington, D.C.: CRC Press LLC.

    Book  Google Scholar 

  • Kluczka, J., Zolotajkin, M., & Ciba, J. (2012). Speciation of Aliminium in the water and bottom sediment of fish-breeding ponds. Archives of Environmental Protection, 38(1), 83–96.

    Article  CAS  Google Scholar 

  • Kowalski, A., Siepak, M., Frankowski, M., & Zioła, A. (2007). Determination of mercury in sedimentary rock samples using cold vapour atomic fluorescence spectrometry. Oceanological and Hydrobiological Studies, 36, 143–153.

    Google Scholar 

  • Krewski, D., Yokel, R., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., Kacew, S., Lindsay, J., Mahfouz, A. M., & Rondeau, V. (2007). Human health risk assessment for Aluminium, Aluminium oxide, and Aluminium hydroxide. J. Toxicol. Environ. Health Part B, 10, 1–269.

    CAS  Google Scholar 

  • Levitan, M., Levchenko, O., Murdmaa, I., Peresypkin, V., Roshichina, I., & Tolmacheva, A. (2008). History of sedimentation in Isfjord (Western Spitsbergen) Lithol. Mineral Research, 43, 520–541.

    Google Scholar 

  • Marttila, H., & Klove, B. (2012). Use of turbidity measurements to estimate suspended solids and nutrient loads from peatland forestry drainage. J Irrig Drain E-Asce., 138, 1088–1096.

    Article  Google Scholar 

  • Nasrabadi, T., Ruegner, H., Sirdari, Z. Z., Schwientek, M., & Grathwohl, P. (2016). Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry, 68, 1–9.

    Article  CAS  Google Scholar 

  • Nguyen, H. L., Leermakers, M., Osan, J., Torok, S., & Baeyens, W. (2005). Heavy metals in Lake Balaton: Water column, suspended matter, sediment and biota. Science of the Total Environment, 340, 213–230.

    Article  CAS  Google Scholar 

  • Pešić, M., Snežana, M., Maja, N., & Miroslava, M. (2020). Determination of heavy metal concentration and correlation analysis of turbidity: a case study of the Zlot source (Bor, Serbia). Water, Air, and Soil Pollution, 231, 98.

    Article  Google Scholar 

  • Raikova-Petrova, G., Stefanova, M., Kozuharov, D., Vаlcheva, R., Rozdina, D., Stanachkova, M., & Petrov, I. (2017). Heavy metal content and element composition of plankton and fish from Iskar reservoir and its ecotone (pp. 22–31). IX: Ecological Engineering and Environment Protection.

    Google Scholar 

  • Rebertus, R. A., Weed, S. B., & Buol, S. W. (1986). Transformations of Biotite to kaolinite during saprolite-soil Weathering1. Soil Science Society of America Journal, 50, 810–819.

    Article  Google Scholar 

  • Reid, D., Edwards, A., Cooper, D., Wilson, E., & McGaw, B. (2003). The quality of drinking water from private water supplies in Aberdeenshire, UK. Water Research, 37(2), 245–254.

    Article  CAS  Google Scholar 

  • Rubinos, D., Arias, M., Aymerich, C., & Diaz-Fierros, F. (2005). Aluminum contents in drinking water from public water supplies of Galicia (Northwest Spain). The fourth inter-celtic colloquuium on hydrology and management of water resources, 1–10.

  • Rugner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environment and Earth Science, 69, 373–380.

    Article  Google Scholar 

  • Sadeghi, S. H. R., Harchegani, M. K., & Younesi, H. A. (2012). Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content. Journal of Earth System Science, 121, 63–71.

    Article  CAS  Google Scholar 

  • Saeedi, M., Daneshvar, S., & Karbassi, A. R. (2004). Role of riverine sediment and particulate matter in adsorption of heavy metals. International journal of Environmental Science and Technology, 1(2), 135–140.

    Article  CAS  Google Scholar 

  • Salomons, W., & Baccini, P. (1986). Chemical species and metal transport in lakes. In M. Bernhard, F. E. Brinckman, & P. J. Sadler (Eds.), The importance of chemical “speciation” in environmental processes. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer Verlag.

    Google Scholar 

  • Sposito, G. (1996). The environmental chemistry of Aluminium. Florida: CRC Press.

    Google Scholar 

  • Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237.

    Article  CAS  Google Scholar 

  • Sutherland, R., & Tack, F. (2007). Sequential extraction of lead from grain size fractionated river sediments using the optimized BCR procedure. Water, Air, and Soil Pollution, 184, 269–284.

    Article  CAS  Google Scholar 

  • Tazaki, K. (1986). Observation of primitive clay precursors during microcline weathering. Contributions to Mineralogy and Petrology, 92, 86–88.

    Article  CAS  Google Scholar 

  • Turner, D. R. (1995). Problems in trace metal speciation modeling. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems. Chichester: IUPAC, John Wiley and Sons Ltd..

    Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere., 51, 633–642.

    Article  CAS  Google Scholar 

  • Yao, H., Zhuang, W., Qian, Y., Xia, B., Yang, Y., & Qian, X. (2016). Estimating and predicting metal concentration using online turbidity values and water quality models in two Rivers of the Taihu Basin, Eastern China. PLoS One, 11(3), e0152491.

    Article  Google Scholar 

  • Zhou, D. M., Chen, H. M., & Zheng, C. R. (2002). Heavy metals in water bodies purified by suspended substrate of rivers. Journal of Environmental Sciences (China), 14, 44–48.

    CAS  Google Scholar 

  • Zioła, A., & Sobczyński, T. (2004). Chemical and geochemical description of different forms of Aluminium in soil. Ekologia i Technika, 67, 11–14.

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the help of Sofiyska Voda AD.

Funding

The authors gratefully acknowledge the financial support from the University of Architecture, Civil Engineering and Geodesy’s Research, Consultancy and Design Centre (Grant BN 221/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Venelinov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelova, I., Ivanov, I. & Venelinov, T. Origin of Aluminium in the Raw Drinking Water of Sofia City, Bulgaria. Water Air Soil Pollut 231, 455 (2020). https://doi.org/10.1007/s11270-020-04819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04819-0

Keywords

Navigation