Skip to main content
Log in

The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present work, 3D flower-like nanostructure titanium phosphates (F-TiP/T; T is the temperature of preparation in Celsius) were prepared through the reaction of tetrabutyl titanate (TBOT) with concentrated phosphoric acid. And F-TiP/T were applied to remove of U(VI). Furthermore, the effects of the preparation temperature, initial solution pH, and the kinetics and thermodynamics of U(VI) adsorbed by F-TiP/T were comprehensively explored. The characterization results of SEM and XRD indicated that the morphology of F-TiP/T was flower-like with a phase of Ti(HPO4)2•2H2O. Moreover, the adsorption results indicated that the processes were fitting to pseudo-first-order and Sips models and the saturated adsorption capacity was recorded as 295.13 mg·g−1. The extraction of U(VI) on F-TiP/T was dominated by ion exchange. The results above indicate that F-TiP/T is a potentially efficient U(VI) adsorbent, which could be utilized in the removal and immobilization of U(VI) in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alhindawy, G., Elshehy, E. A., El-Khouly, M. E., Abdel-Monem, Y. K., & Atrees, M. S. (2019). Fabrication of mesoporous NaZrP cation-exchanger for U(VI) ions separation from uranyl leach liquors. Colloids and Interfaces. https://doi.org/10.3390/colloids3040061.

  • Almazan-Torres, M. G., Drot, R., Mercier-Bion, F., Catalette, H., Den Auwer, C., & Simoni, E. (2008). Surface complexation modeling of uranium(VI) sorbed onto zirconium oxophosphate versus temperature: thermodynamic and structural approaches. Journal of Colloid and Interface Science, 323, 42–51.

    CAS  Google Scholar 

  • Belhachemi, M., & Addoun, F. (2011). Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Applied Water Science, 1, 111–117.

    CAS  Google Scholar 

  • Cao, C., Qu, J., Wei, F., Liu, H., & Song, W. (2012). Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Applied Materials & Interfaces, 4, 4283–4287.

    CAS  Google Scholar 

  • Cheng, X. L., Jiang, J. S., Jin, C. Y., Lin, C. C., Zeng, Y., & Zhang, Q. H. (2014). Cauliflower-like α-Fe2O3 microstructures: toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis. Chemical Engineering Journal, 236, 139–148.

    CAS  Google Scholar 

  • Chylinska, M., Szymanskachargot, M., & Zdunek, A. (2016). FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydrate Polymers, 154, 48–54.

    CAS  Google Scholar 

  • Dai, Y., Lv, R., Huang, D., & Tao, Q. (2018). Sorption of uranium on a bifunctional polymer of diethylenetriaminepentaacetic acid cross-linked β-cyclodextrin in the presence of humic acid: kinetics, isotherms, and thermodynamics. In Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-018-3771-8.

    Chapter  Google Scholar 

  • El-Maghrabi, H. H., Younes, A. A., Salem, A. R., Rabie, K., & El-shereafy, E. S. (2019). Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.05.096.

  • Fakhri, A. (2017). Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: kinetics, thermodynamics and mechanism studies. Journal of Saudi Chemical Society, 21(S1), S52–S57.

    CAS  Google Scholar 

  • Gil, A., Santamaria, L., & Korili, S. A. (2018). Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid and Interface Science Communications, 22, 25–28.

    CAS  Google Scholar 

  • Han, R., Zou, W., Wang, Y., & Zhu, L. (2007). Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. Journal of Environmental Radioactivity, 93, 127–143.

    CAS  Google Scholar 

  • Han, R., Xing, S., Ma, Z., Wu, Y., & Gao, Y. (2012). Effect of the KMnO4 concentration on the structure and electrochemical behavior of MnO2. Journal of Materials Science, 47, 3822–3827.

    CAS  Google Scholar 

  • Han, X., Wang, Y., Cao, X., Dai, Y., Liu, Y., Dong, Z., Zhang, Z., & Liu, Y. (2019). Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Applied Surface Science, 484, 1035–1040.

    CAS  Google Scholar 

  • He, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019). Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism. Science of the Total Environment, 688, 184–198.

    CAS  Google Scholar 

  • Jia, K., Pan, B., Zhang, Q., Zhang, W., Jiang, P., Hong, C., Pan, B., & Zhang, Q. (2008). Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. Journal of Colloid and Interface Science, 318, 160–166.

    CAS  Google Scholar 

  • Kapnisti, M., Noli, F., Misaelides, P., Vourlias, G., Karfaridis, D., & Hatzidimitriou, A. (2018). Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chemical Engineering Journal, 342, 184–195.

    CAS  Google Scholar 

  • Khosravi, M., & Azizian, S. (2015). Synthesis of Fe3O4 flower-like hierarchical nanostructures with high adsorption performance toward dye molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 438–446.

    CAS  Google Scholar 

  • Li, Z., Huang, Z., Guo, W., Wang, L., Zheng, L., Chai, Z., & Shi, W. (2017). Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environmental Science & Technology, 51, 5666–5674.

    CAS  Google Scholar 

  • Liu, Y., Li, Q., Cao, X., Wang, Y., Jiang, X., Li, M., Hua, M., & Zhang, Z. (2013). Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Applied Surface Science, 285, 258–266.

    CAS  Google Scholar 

  • Liu, W., Zhao, X., Wang, T., Fu, J., & Ni, J. (2015). Selective and irreversible adsorption of mercury(II) from aqueous solution by a flower-like titanate nanomaterial. Journal of Materials Chemistry, 3, 17676–17684.

    CAS  Google Scholar 

  • Lu, B., Li, M., Zhang, X., Huang, C., Wu, X., & Fang, Q. (2018). Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. Journal of Hazardous Materials, 343, 255–265.

    CAS  Google Scholar 

  • Mahfouz, M. G., Galhoum, A. A., Gomaa, N. A., Abdelrehem, S. S., Atia, A. A., Vincent, T., & Guibal, E. (2015). Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chemical Engineering Journal, 262, 198–209.

    CAS  Google Scholar 

  • Misaelides, P., Gallios, G. P., Sarri, S., Zamboulis, D., Pavlidou, E., Kantiranis, N., Anousis, I., Zhuravlev, I., & Strelko, V. V. (2006). Separation of uranium from aqueous solutions using Al3+- and Fe3+-modified titanium- and zirconium phosphates. Separation Science and Technology, 41, 97–110.

    CAS  Google Scholar 

  • Pickett, G. (1945). Modification of the brunauer—Emmett—Teller theory of multimolecular adsorption. Journal of the American Chemical Society, 67, 1958–1962.

    CAS  Google Scholar 

  • Purwajanti, S., Zhou, L., Nor, Y. A., Zhang, J., Zhang, H., Huang, X., & Yu, C. (2015). Synthesis of magnesium oxide hierarchical microspheres: a dual-functional material for water remediation. ACS Applied Materials & Interfaces, 7, 21278–21286.

    CAS  Google Scholar 

  • Ren, L., Zhou, D., Wang, J., Zhang, T., Peng, Y., & Chen, G. (2020). Biomaterial-based flower-like MnO2@carbon microspheres for rapid adsorption of amoxicillin from wastewater. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2020.113074.

  • Sala, L., Figueira, F. S., Cerveira, G. P., Moraes, C. C., & Kalil, S. J. (2014). Kinetics and adsorption isotherm of C-phycocyanin from Spirulina platensis on ion-exchange resins. Brazilian Journal of Chemical Engineering, 31, 1013–1022.

    Google Scholar 

  • Shi, L. N., Zhang, X., & Chen, Z. L. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    CAS  Google Scholar 

  • Shin, W., Oh, J., Choung, S., Cho, B. W., Lee, K. S., Yun, U., Woo, N. C., & Kim, H. K. (2016). Distribution and potential health risk of groundwater uranium in Korea. Chemosphere, 163, 108–115.

    CAS  Google Scholar 

  • Su, M., Tsang, D. C. W., Ren, X., Shi, Q., Tang, J., Zhang, H., Kong, L., Hou, L. a., Song, G., & Chen, D. (2019). Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: evaluation on characteristics, mechanisms and performance. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.07.059.

  • Sun, Y., Ding, C., Cheng, W., & Wang, X. (2014). Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 399–408.

    CAS  Google Scholar 

  • Tang, M., Chen, J., Wang, P., Wang, C., & Ao, Y. (2018). Highly efficient adsorption of uranium(vi) from aqueous solution by a novel adsorbent: titanium phosphate nanotubes. Environmental Science: Nano, 5, 2304–2314.

    CAS  Google Scholar 

  • Viglianisi, C., Vasa, K., Tanini, D., Capperucci, A., Amorati, R., Valgimigli, L., Baschieri, A., & Menichetti, S. (2019). Ditocopheryl sulfides and disulfides: synthesis and antioxidant profile. Chemistry--A European Journal, 25, 9108–9116.

    CAS  Google Scholar 

  • Wang, X., Ding, J., Yao, S., Wu, X., Feng, Q., Wang, Z., & Geng, B. (2014a). High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. Journal of Materials Chemistry A, 2, 15958–15963.

    CAS  Google Scholar 

  • Wang, X., Yang, X., Cai, J., Miao, T., Li, L., Li, G., Deng, D., Jiang, L., & Wang, C. (2014b). Novel flower-like titanium phosphate microstructures and their application in lead ion removal from drinking water. Journal of Materials Chemistry, 2, 6718–6722.

    CAS  Google Scholar 

  • Wang, R., Ye, J., Rauf, A., Wu, X., Liu, H., Ning, G., & Jiang, H. (2016). Microwave-induced synthesis of pyrophosphate Zr1-xTixP2O7 and TiP2O7 with enhanced sorption capacity for uranium (VI). Journal of Hazardous Materials, 315, 76–85.

    CAS  Google Scholar 

  • Wang, D., Xu, Y., Yang, L., Wang, F., Asiri, A. M., & Alamry, K. A. (2018a). Synthesis of aluminum pyrophosphate for efficient sorption of U(VI). Journal of Molecular Liquids, 258, 327–334.

    CAS  Google Scholar 

  • Wang, L., Song, H., Yuan, L., Li, Z., Zhang, Y., Gibson, J. K., Zheng, L., Chai, Z., & Shi, W. (2018b). Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environmental Science & Technology, 52, 10748–10756.

    CAS  Google Scholar 

  • Wang, D., Xu, Y., Xiao, D., Qiao, Q., Yin, P., Yang, Z., Li, J., Winchester, W., Wang, Z., & Hayat, T. (2019). Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. Journal of Hazardous Materials, 371, 83–93.

    CAS  Google Scholar 

  • Witek-Krowiak, A., & Harikishore Kumar Reddy, D. (2013). Removal of microelemental Cr(III) and cu(II) by using soybean meal waste – unusual isotherms and insights of binding mechanism. Bioresource Technology, 127, 350–357.

    CAS  Google Scholar 

  • Yan, Y., Huang, J., Guan, Y., Shang, K., Jian, R., & Wang, Y. (2014). Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polymer Degradation and Stability, 99, 35–42.

    CAS  Google Scholar 

  • Yang, S., Huang, P., Peng, L., Cao, C., Zhu, Y., Wei, F., Sun, Y., & Song, W. (2016). Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis. Journal of Materials Chemistry, 4, 400–406.

    CAS  Google Scholar 

  • Yang, D., Wang, X., Song, G., Zhao, G., Chen, Z., Yu, S., Gu, P., Wang, H., & Wang, X. (2017). One-pot synthesis of arginine modified hydroxyapatite carbon microsphere composites for efficient removal of U(VI) from aqueous solutions. Science Bulletin, 62, 1609–1618.

    CAS  Google Scholar 

  • Yin, L., Hu, B., Zhuang, L., Fu, D., Li, J., Hayat, T., Alsaedi, A., & Wang, X. (2020). Synthesis of flexible cross-linked cryptomelane-type manganese oxide nanowire membranes and their application for U(VI) and Eu(III) elimination from solutions. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2019.122744.

  • Yu, S., Wang, X., Liu, Y., Chen, Z., Wu, Y., Liu, Y., Pang, H., Song, G., Chen, J., & Wang, X. (2019). Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chemical Engineering Journal, 365, 51–59.

    CAS  Google Scholar 

  • Yuanfeng, W., Lei, Z., Jianwei, M., Shiwang, L., Jun, H., Yuru, Y., & Lehe, M. (2016). Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin. Journal of Chromatography B, 1028, 231–236.

    CAS  Google Scholar 

  • Zhang, Z., Dong, Z., Dai, Y., Xiao, S., Cao, X., Liu, Y., Guo, W., Luo, M., & Le, Z. (2016). Amidoxime-functionalized hydrothermal carbon materials for uranium removal from aqueous solution. RSC Advances, 6, 102462–102471.

    CAS  Google Scholar 

  • Zhang, Z., Dong, Z., Wang, X., Ying, D., Niu, F., Cao, X., Wang, Y., Hua, R., Liu, Y., & Wang, X. (2018). Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chemical Engineering Journal, 341, 208–217.

    CAS  Google Scholar 

  • Zhang, Z., Dong, Z., Wang, X., Dai, Y., Cao, X., Wang, Y., Hua, R., Feng, H., Chen, J., & Liu, Y. (2019). Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chemical Engineering Journal, 370, 1376–1387.

    CAS  Google Scholar 

  • Zhu, Y., Dai, W., Deng, K., Pan, T., & Guan, Z. (2020). Efficient removal of Cr(VI) from aqueous solution by Fe-Mn oxide-modified biochar. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-020-4432-2.

  • Zou, L., Chen, Z., Zhang, X., Liu, P. N., & Li, X. (2014). Phosphate promotes uranium (VI) adsorption in Staphylococcus aureus LZ-01. Letters in Applied Microbiology, 59, 528–534.

    CAS  Google Scholar 

  • Zou, Y., Wang, X., Wu, F., Yu, S., Hu, Y., Song, W., Liu, Y., Wang, H., Hayat, T., & Wang, X. (2017). Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustainable Chemistry & Engineering, 5, 1173–1185.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21906017, 21866004, 21866003), the Science and Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007), and the Jiangxi Program of Academic and Technical Leaders of Major Disciplines (Grant No. 20182BCB22011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang or Yunhai Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zeng, D., Dai, Y. et al. The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water Air Soil Pollut 231, 464 (2020). https://doi.org/10.1007/s11270-020-04817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04817-2

Keywords

Navigation