Skip to main content

Advertisement

Log in

Phytoremediation Mechanisms in Air Pollution Control: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Air pollutants originated from natural and anthropogenic sources and able to bio-magnify and bio-accumulate in the trophic levels, thus increase toxicity in the food chain. Various air pollutants (particulate matters (PMs), volatile organic compounds (VOCs), inorganic air pollutants (IAP), persistent organic pollutants (POPs), heavy metals, and black carbon) resulted in adverse effects on environmental and human health after prolonged exposure. These airborne particles can travel in gaseous form for long distance and deteriorate the air quality of downstream areas. Air pollution abatement can be implemented by reducing emissions at source and purifying pollutants with remediation techniques. However, air pollution remained as the dominant issue to cause burden in human and ecosystem well-being. Due to drawbacks like expensive, high maintenance, and likelihood for pollutants’ reemission, existing conventional remediation technologies is insufficient for air pollutants mitigation. Phytoremediation enters the picture of air pollution control as a cost-effective, energy-saving, and environmental-friendly technology in remediating air pollutants. In phytoremediation, plant organs and associating microbes in the phyllosphere and rhizosphere interacted with each other to remediate air pollutants. Phytoremediation of air pollutants involves the rhizosphere of plants as pollutants may deposit in the soil during leaf fall and precipitation. Additionally, the phytoremediation mechanisms involve phytoextraction, phytovolatilization, phytodegradation, phytostabilization, rhizodegradation, and rhizofiltration. A brief overview of phytoremediation mechanisms for each air pollutants is presented. In short, the benefits of phytoremediation and its associated gaps in air pollution control are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adnan, L. A., Mohd Yusoff, A. R., Hadibarata, T. & Khudhair, A. B. (2014). Biodegradation of Bis-Azo dye reactive black 5 by white-rot fungus Trametes gibbosa sp. WRF 3 and its metabolite characterization. Water, Air, & Soil Pollution, 225, 2119.

  • Adnan, Z., Mir, S., & Habib, M. (2017). Exhaust gases depletion using non-thermal plasma (NTP). Atmospheric Pollution Research, 8, 338–343.

    Google Scholar 

  • Agarwal, P., Sarkar, M., Chakraborty, B. & Banerjee, T. (2018), Phytoremediation of air pollutants: prospects and challenges. InTech Open.

    Google Scholar 

  • Alharbi, O. M. L., Basheer, A. A., Khattab, R. A., & Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442–453.

    CAS  Google Scholar 

  • Awa, S. H., & Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water, Air, & Soil Pollution, 231, 47.

    CAS  Google Scholar 

  • Borm, P. & Donaldson, K.: 2006, An introduction to particle toxicology: From coal mining to nanotechnology, pp. 1-12.

  • Bozkurt, Z., Doğan, G., Arslanbaş, D., Pekey, B., Pekey, H., Dumanoğlu, Y., Bayram, A., & Tuncel, G. (2015). Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environmental Monitoring and Assessment, 187, 590.

    Google Scholar 

  • Brilli, F., Fares, S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A., Annesi-Maesano, I., Sebastiani, F., Alivernini, A., Varriale, V., & Menghini, F. (2018). Plants for sustainable improvement of indoor air quality. Trends in Plant Science, 23, 507–512.

    CAS  Google Scholar 

  • Burken, J. G. (2003). Uptake and metabolism of organic compounds: green-liver model. Phytoremediation, 59–84.

  • Chandra, I., Kim, S., Seto, T., Otani, Y., Takami, A., Yoshino, A., Irei, S., Park, K., Takamura, T., Kaneyasu, N., & Hatakeyama, S. (2016). New particle formation under the influence of the long-range transport of air pollutants in East Asia. Atmospheric Environment, 141, 30–40.

    CAS  Google Scholar 

  • Chen, G., Jin, Z., Li, S., Jin, X., Tong, S., Liu, S., Yang, Y., Huang, H. & Guo, Y. (2018). Early life exposure to particulate matter air pollution (PM1, PM2.5 and PM10) and autism in Shanghai, China: a case-control study. Environment International, 121.

  • Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326.

    Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13, 393–397.

    CAS  Google Scholar 

  • Dominguez, J. J. A., Inoue, C., & Chien, M.-F. (2020). Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 387, 121695.

    CAS  Google Scholar 

  • Duan, K., Sun, G., Zhang, Y., Yahya, K., Wang, K., Madden, J. M., Caldwell, P. V., Cohen, E. C., & McNulty, S. G. (2017). Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States. Climatic Change, 140, 259–272.

    CAS  Google Scholar 

  • Erakhrumen, A., & Agbontalor. (2007). Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research Review, 2, 151–156.

    Google Scholar 

  • Fang, M., Yi, N., Di, W., Wang, T., & Wang, Q. (2020). Emission and control of flue gas pollutants in CO2 chemical absorption system – a review. International Journal of Greenhouse Gas Control, 93, 102904.

    Google Scholar 

  • Feng, N.-X., Yu, J., Zhao, H.-M., Cheng, Y.-T., Mo, C.-H., Cai, Q.-Y., Li, Y.-W., Li, H., & Wong, M.-H. (2017). Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 583, 352–368.

    CAS  Google Scholar 

  • Feng, Y., Ning, M., Lei, Y., Sun, Y., Liu, W., & Wang, J. (2019). Defending blue sky in China: effectiveness of the “air pollution prevention and control action plan” on air quality improvements from 2013 to 2017. Journal of Environmental Management, 252, 109603.

    CAS  Google Scholar 

  • Francke, K. P., Miessner, H., & Rudolph, R. (2000). Plasmacatalytic processes for environmental problems. Catalysis Today, 59, 411–416.

    CAS  Google Scholar 

  • Gao, X., Liu, S., Zhang, Y., Luo, Z., Ni, M., & Cen, K. (2011). Adsorption and reduction of NO2 over activated carbon at low temperature. Fuel Processing Technology, 92, 139–146.

    CAS  Google Scholar 

  • Gawronski, S. W., & Gawronska, H. (2017). Air phytoremediation. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: management of environmental contaminants (Vol. 5, pp. 487–504). Cham: Springer International Publishing.

    Google Scholar 

  • Gawronski, S. W., Gawronska, H., Lomnicki, S., Sæbo, A., & Vangronsveld, J. (2017). Chapter eight - plants in air phytoremediation. In A. Cuypers & J. Vangronsveld (Eds.), Advances in Botanical Research (pp. 319–346). Academic Press.

  • Guarino, F., Miranda, A., Castiglione, S., & Cicatelli, A. (2020). Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere, 251, 126310.

    CAS  Google Scholar 

  • Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnology Advances, 26, 398–410.

    CAS  Google Scholar 

  • Guo, Y., Li, Y., Zhu, T., & Ye, M. (2015). Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2. Fuel, 143, 536–542.

    CAS  Google Scholar 

  • Guo, Z., Xie, Y., Hong, I., & Kim, J. (2001). Catalytic oxidation of NO to NO2 on activated carbon. Energy Conversion and Management, 42, 2005–2018.

    CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2012). Effect of environmental factors in the decolorization of Remazol Brilliant Blue R by Polyporus sp. S133. Journal of the Chilean Chemical Society, 57, 1095–1098.

    CAS  Google Scholar 

  • Ho, A. F. W., Wah, W., Earnest, A., Ng, Y. Y., Xie, Z., Shahidah, N., Yap, S., Pek, P. P., Liu, N., Lam, S. S. W., & Ong, M. E. H. (2018). Health impacts of the Southeast Asian haze problem – a time-stratified case crossover study of the relationship between ambient air pollution and sudden cardiac deaths in Singapore. International Journal of Cardiology, 271, 352–358.

    Google Scholar 

  • Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules, 21, 56.

    Google Scholar 

  • Jafarinejad, S. (2017). 5 - control and treatment of air emissions. In S. Jafarinejad (Ed.), Petroleum Waste Treatment and Pollution Control (pp. 149–183). Butterworth-Heinemann.

  • Kagalkar, A. N., Jadhav, M. U., Bapat, V. A., & Govindwar, S. P. (2011). Phytodegradation of the triphenylmethane dye Malachite Green mediated by cell suspension cultures of Blumea malcolmii Hook. Bioresource Technology, 102, 10312–10318.

    CAS  Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    CAS  Google Scholar 

  • Kanthasamy, S., Hadibarata, T., Hidayat, T., Alamri, S. A., & Al-Ghamdi, A. A. (2020). Adsorption of azo and anthraquinone dye by using watermelon peel powder and corn peel powder: equilibrium and kinetic studies. Biointerface Research in Applied Chemistry, 10, 4706–4713.

    CAS  Google Scholar 

  • Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28, 61–69.

    CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37, 631–649.

    CAS  Google Scholar 

  • Kristanti, R. A., Kanbe, M., Hadibarata, T., Toyama, T., Tanaka, Y., & Mori, K. (2012). Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environmental Science and Pollution Research International, 19, 1852–1858.

    CAS  Google Scholar 

  • Kumar, R., & Gupta, P. (2016). Air pollution control policies and regulations (pp. 133–149).

    Google Scholar 

  • Lasat, M. (2001). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Google Scholar 

  • Lau, K. B. K., Hadibarata, T., Eliwina, E., Dewi, R., Al Sahil, A. A., & Al-Ghamdi, A. A. (2020). Reactive dyes adsorption via Citrus hystrix peel powder and Zea mays cob powder: characterization, isotherm and kinetic studies. Biointerface Research in Applied Chemistry, 10, 4803–4810.

    CAS  Google Scholar 

  • Lee, M., & Yang, M. (2010). Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials, 173, 589–596.

    CAS  Google Scholar 

  • Li, J., Liu, C., Cheng, Y., Guo, S., Sun, Q., Kan, L., Chen, R., Kan, H., Bai, H., & Cao, J. (2018). Association between ambient particulate matter air pollution and ST-elevation myocardial infarction: a case-crossover study in a Chinese city. Chemosphere, 219, 724–729.

    Google Scholar 

  • Li, Y., Zhang, J., Zhu, G., Liu, Y., Wu, B., Ng, W. J., Appan, A., & Tan, S. K. (2016). Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland. Water Research, 102, 294–304.

    CAS  Google Scholar 

  • Liu, W.-S., Chen, Y.-Y., Huot, H., Liu, C., Guo, M.-N., Qiu, R.-L., Morel, J. L., & Tang, Y.-T. (2020). Phytoextraction of rare earth elements from ion-adsorption mine tailings by Phytolacca americana: effects of organic material and biochar amendment. Journal of Cleaner Production, 275, 122959.

    CAS  Google Scholar 

  • Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., & Elias, A. (2015). A review of indoor air treatment technologies. Reviews in Environmental Science and Bio/Technology, 14, 499–522.

    CAS  Google Scholar 

  • Ly, B.-T., Kajii, Y., Nguyen, T.-Y.-L., Shoji, K., Van, D.-A., Do, T.-N.-N., Nghiem, T.-D., & Sakamoto, Y. (2020). Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi. Chemosphere, 254, 126749.

    CAS  Google Scholar 

  • Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science, 7, 918.

    Google Scholar 

  • Mohsin, M., Kuittinen, S., Salam, M. M. A., Peräniemi, S., Laine, S., Pulkkinen, P., Kaipiainen, E., Vepsäläinen, J., & Pappinen, A. (2019). Chelate-assisted phytoextraction: growth and ecophysiological responses by Salix schwerinii E.L Wolf grown in artificially polluted soils. Journal of Geochemical Exploration, 205, 106335.

    CAS  Google Scholar 

  • Mølhave, L. (1991). Volatile organic compounds, indoor air quality and health. Indoor Air, 1, 357–376.

    Google Scholar 

  • Morikawa, H., & Erkin, Ö. C. (2003). Basic processes in phytoremediation and some applications to air pollution control. Chemosphere, 52, 1553–1558.

    CAS  Google Scholar 

  • Najeeb, U., Ahmad, W., Zia, M. H., Zaffar, M., & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 10, S3310–S3317.

    CAS  Google Scholar 

  • Ndong Ba, A., Verdin, A., Cazier, F., Garcon, G., Thomas, J., Cabral, M., Dewaele, D., Genevray, P., Garat, A., Allorge, D., Diouf, A., Loguidice, J. M., Courcot, D., Fall, M., & Gualtieri, M. (2019). Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal). Environmental Pollution, 248, 397–407.

    CAS  Google Scholar 

  • Oh, H.-R., Ho, C.-H., Kim, J., Chen, D., Lee, S., Choi, Y.-S., Chang, L.-S., & Song, C.-K. (2015). Long-range transport of air pollutants originating in China: a possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmospheric Environment, 109, 23–30.

    CAS  Google Scholar 

  • Othman, J., Sahani, M., Mahmud, M., & Sheikh Ahmad, M. K. (2014). Transboundary smoke haze pollution in Malaysia: inpatient health impacts and economic valuation. Environmental Pollution, 189, 194–201.

    CAS  Google Scholar 

  • Pandey, V. C., & Bajpai, O. (2019). Chapter 1 - phytoremediation: from theory toward practice. In C. Pandey & K. Bauddh (Eds.), V (pp. 1–49). Phytomanagement of polluted sites: Elsevier.

    Google Scholar 

  • Pettit, T., Irga, P. J., & Torpy, F. R. (2018). Towards practical indoor air phytoremediation: a review. Chemosphere, 208, 960–974.

    CAS  Google Scholar 

  • Popek, E. (2018). Chapter 2 - environmental chemical pollutants. In E. Popek (Ed.), Sampling and analysis of environmental chemical pollutants (2nd ed., pp. 13–69). Berlin: Elsevier.

    Google Scholar 

  • Ramos, J. L., Molina, L., & Segura, A. (2009). Removal of organic toxic chemicals in the rhizosphere and phyllosphere of plants. Microbial Biotechnology, 2, 144–146.

    Google Scholar 

  • Ranzani, O. T., Milà, C., Sanchez, M., Bhogadi, S., Kulkarni, B., Balakrishnan, K., Sambandam, S., Sunyer, J., Marshall, J. D., Kinra, S., & Tonne, C. (2020). Personal exposure to particulate air pollution and vascular damage in peri-urban South India. Environment International, 139, 105734.

    CAS  Google Scholar 

  • Reddy, P., Kim, K.-H., & Kim, Y.-H. (2011). A review of photocatalytic treatment for various air pollutants. Asian Journal of Atmospheric Environment, 5, 181–188.

    CAS  Google Scholar 

  • Ren, Y., Ge, Y., Gu, B., Min, Y., Tani, A., & Chang, J. (2014). Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces. Environmental Science & Technology, 48, 6237–6246.

    CAS  Google Scholar 

  • Roland, U., Holzer, F., & Kopinke, F. D. (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73, 315–323.

    CAS  Google Scholar 

  • Salim, S. d., Hadibarata, T., Elwina, E., Dewi, R., Alaraidh, I. A., Al-Ghamdi, A. A., & Alsahli, A. A. (2019). Development of activated carbon from Eichhornia Crassipes via chemical activation and its application to remove a synthetic dye. Biointerface Research in Applied Chemistry, 9, 4394–4400.

    CAS  Google Scholar 

  • Sandermann, H. J. (1994). Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics and Genomics, 4, 225–241.

    CAS  Google Scholar 

  • Scott, P. S., Andrew, J. P., Bundy, B. A., Grimm, B. K., Hamman, M. A., Ketcherside, D. T., Li, J., Manangquil, M. Y., Nuñez, L. A., Pittman, D. L., Rivero-Zevallos, A., Uhlorn, R. & Johnston, N. A. C. (2020). Observations of volatile organic and sulfur compounds in ambient air and health risk assessment near a paper mill in rural Idaho, U. S. A. Atmospheric Pollution Research, https://doi.org/10.1016/j.apr.2020.07.014.

  • Sedjo, R., & Sohngen, B. (2012). Carbon sequestration in forests and soils. Annual Review of Resource Economics, 4, 127–144.

    Google Scholar 

  • Shiraishi, F., & Ishimatsu, T. (2009). Toluene removal from indoor air using a miniaturized photocatalytic air purifier including a preceding adsorption/desorption unit. Chemical Engineering Science, 64, 2466–2472.

    CAS  Google Scholar 

  • Singh, S. N., & Verma, A. (2007). Phytoremediation of air pollutants: a review. In S. N. Singh & R. D. Tripathi (Eds.), Environmental Bioremediation Technologies (pp. 293–314). Berlin: Springer Berlin Heidelberg.

    Google Scholar 

  • Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95.

    CAS  Google Scholar 

  • Sinha, R. K., Herat, S., & Tandon, P. K. (2007). Phytoremediation: role of plants in contaminated site management. In S. N. Singh & R. D. Tripathi (Eds.), Environmental Bioremediation Technologies (pp. 315–330). Berlin: Springer Berlin Heidelberg.

    Google Scholar 

  • Sitaras, I. E., & Siskos, P. A. (2008). The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study. Environmental Chemistry Letters, 6, 59–69.

    CAS  Google Scholar 

  • Sun, T., Wu, H., Wang, X., Ji, C., Shan, X., & Li, F. (2019). Evaluation on the biomagnification or biodilution of trace metals in global marine food webs by meta-analysis. Environmental Pollution, 264, 113856.

    Google Scholar 

  • Tapia, Y., Bustos, P., Salazar, O., Casanova, M., Castillo, B., Acuña, E., & Masaguer, A. (2017). Phytostabilization of Cu in mine tailings using native plant Carpobrotus aequilaterus and the addition of potassium humates. Journal of Geochemical Exploration, 183, 102–113.

    CAS  Google Scholar 

  • Wang, X., Hart, J., Liu, Q., Wu, S., Nan, H., & Laden, F. (2020). Association of particulate matter air pollution with leukocyte mitochondrial DNA copy number. Environment International, 141, 105761.

    CAS  Google Scholar 

  • Weber, F., Kowarik, I., & Säumel, I. (2014). Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environmental Pollution, 186, 234–240.

    CAS  Google Scholar 

  • Wei, X., Lyu, S., Yu, Y., Wang, Z., Liu, H., Pan, D., & Chen, J. (2017). Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in Plant Science, 8, 1318.

    Google Scholar 

  • Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., Gawronska, H., Vangronsveld, J., & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences, 16, 25576–25604.

    CAS  Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20, 248–254.

    CAS  Google Scholar 

  • Wood, D., Shaw, S., Cawte, T., Shanen, E., & Van Heyst, B. (2019). An overview of photocatalyst immobilization methods for air pollution remediation. Chemical Engineering Journal, 391, 123490.

    Google Scholar 

  • Zeng, Y., Xie, R., Cao, J., Chen, Z., Fan, Q., Liu, B., Lian, X., & Huang, H. (2020). Simultaneous removal of multiple indoor-air pollutants using a combined process of electrostatic precipitation and catalytic decomposition. Chemical Engineering Journal, 388, 124219.

    CAS  Google Scholar 

  • Zhang, P., & Zhou, X. (2020). Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China. Science of the Total Environment, 733, 139114.

    CAS  Google Scholar 

  • Zhang, Y., Mo, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., Little, J., Corsi, R., Deng, Q., Leung, M. K. H., Fang, L., & Chen, W. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45, 4329–4343.

    CAS  Google Scholar 

  • Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., & Qi, S. (2018). Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmospheric Chemistry and Physics, 18, 4567–4595.

    CAS  Google Scholar 

Download references

Funding

This project was partially supported by Nagao Environmental Foundation, Japan (2018) Cycle 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.X.Y., Hadibarata, T. & Yuniarto, A. Phytoremediation Mechanisms in Air Pollution Control: a Review. Water Air Soil Pollut 231, 437 (2020). https://doi.org/10.1007/s11270-020-04813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04813-6

Keywords

Navigation