Skip to main content
Log in

The Different Biomarkers in the Assessment of the Marine Environmental Quality Using the Representative Species Mytilus trossulus

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The mussel Mytilus trossulus was used to assess the relationship between the reactions of biomarkers and the degree of environmental pollution, as well as their potential use in biomonitoring. Metal bioaccumulation and a battery of biomarkers were measured in the mussels from the Zolotoy Rog Bay and Vostok Bay (Peter the Great Bay, the Sea of Japan) that display substantial differences in the levels of pollution. The biomarkers included lysosomal membrane stability (LMS); condition indices (CI and CIL); the activities of catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE); and the levels of lipid peroxidation (thiobarbituric acid reactive substances, TBARS), protein oxidation (protein carbonyls, PC), and DNA damage. At the molecular level for M. trossulus, the biomarkers of oxidative stress (CAT, TBARS, and PC) and AChE do not show a known degree of environmental pollution. At the same time, the biomarkers LMS and condition indices, as well as the biomarkers GST and DNA damage, are sensitive to complex chronic environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Fanharawi, A. A., Rabee, A. M., & Al-Mamoori, A. M. J. (2018). Biochemical and molecular alterations in freshwater mollusks as biomarkers for petroleum product, domestic heating oil. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2018.04.006.

  • Bainy, A. C. D., Almeida, E. A., Müller, I. C., Ventura, E. C., & Medeiros, I. D. (2000). Biochemical responses in farmed mussel Perna perna transplanted to contaminated sites on Santa Catarina Island, SC, Brazil. Marine Environmental Research. https://doi.org/10.1016/s0141-1136(00)00039-8.

  • Balbi, T., Fabbri, R., Montagna, M., Camisassi, G., & Canesi, L. (2017). Seasonal variability of different biomarkers in mussels (Mytilus galloprovincialis) farmed at different sites of the Gulf of La Spezia, Ligurian Sea, Italy. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2017.01.035.

  • Barysheva, V. S., Chernova, E. N., Patrusheva, O. V. (2019) Zagryazneniye morskoy sredy zaliva Vostok Yaponskogo morya organicheskimi veshchestvami (2016–2018 gg.) [Pollution of the marine environment of the Vostok Bay (Japan Sea) by organic matter in 2016–2018]. Vestnik DVO RAN, https://doi.org/10.25808/08697698.2019.204.2.010

  • Belcheva, N., Istomina, A., Dovzhenko, N., Lishavskaya, T., & Chelomin, V. (2015). Using heavy metal content and lipid peroxidation indicators in the tissues of the mussel Crenomytilus grayanus for pollution assessment after marine environmental remediation. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-015-1624-3.

  • Benali, I., Boutiba, Z., Merabet, A., & Chèvre, N. (2015). Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2015.03.041.

  • Bjelland, S., & Seeberg, Е. (2003). Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutation Research. https://doi.org/10.1016/j.mrfmmm.2003.07.002.

  • Blanchette, B., Fend, X., & Singh, B. R. (2007). Marine Glutathione S-Transferases. Marine Biotechnology, 9, 513–542.

    Article  CAS  Google Scholar 

  • Box, A., Sureda, A., Galgani, F., Pons, A., & Deudero, S. (2007). Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. https://doi.org/10.1016/j.cbpc.2007.06.006.

  • Brooks, S. J., Farmen, E., Heier, L. S., Blanco-Rayón, E., & Izagirre, U. (2015). Differences in copper bioaccumulation and biological responses in three Mytilus species. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2014.12.018.

  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.

    Article  CAS  Google Scholar 

  • Cheung, C. C., Zheng, G., Li, A. M., Richardson, B., & Lam, P. K. (2001). Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels. Perna viridis. Aquatic Toxicology. https://doi.org/10.1016/s0166-445x(00)00145-4.

  • Christie, N. T., & Costa, M. (1984). Review. In vitro assessment of the toxicity of metal compounds. IV. Disposition of metals in cells: Interactions with membranes, glutathione, metallothioneins and DNA. Biological Trace Element Research, 6, 139–158.

    Article  CAS  Google Scholar 

  • Dagnino, A., Allen, J. I., Moore, M. N., Broeg, K., Canesi, L., & Viarengo, A. (2007). Development of an expert system for the integration of biomarker responses in mussels into an animal health index. Biomarkers. https://doi.org/10.1080/13547500601037171.

  • Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta. https://doi.org/10.1016/s0009-8981(03)00003-2.

  • Damiens, G., Gnassia-Barelli, M., Loquès, F., Roméo, M., & Salbert, V. (2007). Integrated biomarker response index as a useful tool for environmental assessment evaluated using transplanted mussels. Chemosphere. https://doi.org/10.1016/j.chemosphere.2006.05.032.

  • Depledge, M. H. (1993). The rational basis for the use of biomarkers as ecotoxicological tools. In M. C. Fossi & C. Leonzio (Eds.), Nondestructive biomarkers in vertebrates (pp. 261–285). Boca Raton, FL, USA: Lewis Publishers.

    Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andreas, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  CAS  Google Scholar 

  • Ercal, N., Gurer-Orhan, Y., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.

    Article  CAS  Google Scholar 

  • Frenzilli, G., Nigro, M., Scarcelli, V., Gorbi, S., & Regoli, F. (2001). DNA integrity and total oxyradical scavenging capacity in the Mediterranean mussel. Mytilus galloprovincialis: a field study in a highly eutrophicated coastal lagoon. Aquatic Toxicology. https://doi.org/10.1016/s0166-445x(00)00159-4.

  • Frenzilli, G., Bocchetti, R., Pagliarecci, M., Nigro, M., Annarumma, F., Scarcelli, V., Fattorini, D., & Regoli, F. (2004). Time-course evaluation of ROS-mediated toxicity in mussels, Mytilus galloprovincialis, during a field translocation experiment. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2004.03.050.

  • Fulton, M. H., Key, P. B (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37–45.

  • Gagne, F., Burgeot, T., Hellou, J., St-Jean, S., Farcy, E., & Blaise, C. (2008). Spatial variations in biomarkers of Mytilus edulis mussels at four polluted regions spanning the northern hemisphere. Environmental Researsh. https://doi.org/10.1016/j.envres.2007.09.013.

  • Ghezzi, P., & Bonetto, V. (2003). Redox proteomics: Identification of oxidatively modified proteins. Proteomics. https://doi.org/10.1002/pmic.200300435.

  • Guerlet, E., Vasseur, P., & Giamberini, L. (2010). Spatial and temporal variations of biological responses to environmental pollution in the freshwater zebra mussel. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2010.05.009.

  • Guo, R., Pan, L., & Ji, R. (2017). A multi-biomarker approach in scallop Chlamys farreri to assess the impact of contaminants in Qingdao coastal area of China. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.04.043.

  • Habig, W. H., & Jakoby, W. B. (1981). Assay for differentiation of glutathione-S-transferases. Methods in Enzymology, 77, 398–405.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4th ed.). Oxford: Oxford Univ. Press.

    Google Scholar 

  • Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.

  • Kaloyianni, M., Dailianis, S., Chrisikopoulou, E., Zannou, A., Koutsogiannaki, S., Alamdari, D. H., Koliakos, G., & Dimitriadis, V. K. (2009). Oxidative effects of inorganic and organic contaminants on haemolymph of mussels. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. https://doi.org/10.1016/j.cbpc.2009.01.006.

  • Khristoforova, N. K., Shulkin, V. M., Kavun, V. Y., & Chernova, Y. N. (1994). Tyazhelyye metally v promyslovykh i rultiviruyemykh molluskakh zaliva Petra Velikogo (heavy metals in fished and cultivated species of marine mollusks in Peter the great bay). Vladivostok: Dalnauka (In Russian).

    Google Scholar 

  • Kirchin, M. A., Moore, M. N., Dean, R. T., & Winston, G. W. (1992). The role of oxyradicals in intracellular proteolysis and toxicity in mussels. Marine Environmental Research. https://doi.org/10.1016/0141-1136(92)90127-8.

  • Kurz, T., Terman, A., Gustafsson, B., & Brunk, U. T. (2008). Lysosomes and oxidative stress in aging and apoptosis. Biochimica et Biophysica Acta General Subjects. https://doi.org/10.1016/j.bbagen.2008.01.009.

  • Lowe, D. M., Fossato, V. U., Depledge, M. H. (1995) Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from the Venice Lagoon: An in vitro study. Marine Ecology Progress Series, https://doi.org/10.3354/meps129189.

  • Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2010.10.006.

  • Maria, V. L., & Bebianno, M. J. (2011). Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. https://doi.org/10.1016/j.cbpc.2011.02.004.

  • Markwell, M. A., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87, 206–210.

    Article  CAS  Google Scholar 

  • Martinez-Gomez, C., Bignell, J., & Lowe, D. (2015). Lysosomal membrane stability in mussels. ICES Techniques in Marine Environmental Sciences, 56, 41.

    Google Scholar 

  • Martinez-Gomez, C., Robinson, C. D., Burgeot, T., Gubbins, M., Halldorsson, H. P., Albentosa, M., Bignell, J. P., Hylland, K., Vethaak, A. D. (2017) Biomarkers of general stress in mussels as common indicators for marine biomonitoring programmes in Europe: The ICON experience. Marine Environmental Research, https://doi.org/10.1016/j.marenvres.2015.10.012.

  • McDonagh, B., Tyther, R., & Sheehan, D. (2005). Carbonylation and glutathionylation of proteins in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: Actin as a target for oxidative stress. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2005.03.020.

  • Meng, F., Wang, Z., Cheng, F., Du, X., Fu, W., Wang, Q., Yi, X., Li, Y., & Zhou, Y. (2013). The assessment of environmental pollution along the coast of Beibu Gulf, northern South China Sea: An integrated biomarker approach in the clam Meretrix meretrix. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2013.01.003.

  • Mesquita, C. S., Oliveira, R., Bento, F., Geraldo, D., Rodrigues, J. V., & Marcos, J. C. (2014). Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical Biochemistry. https://doi.org/10.1016/j.ab.2014.04.034.

  • Mitchelmore, C., & Chipman, J. (1998). Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay. Aquatic Toxicology. https://doi.org/10.1016/s0166-445x(97)00064-7.

  • Mitchelmore, C. L., Birmelin C., Livingstone, D. R., Chipman, J. K. (1998) Detection of DNA strand breaks in isolated mussel (Mytilus edulis L.) digestive gland cells using the “comet” assay Ecotoxicology and Environmental Safety, https://doi.org/10.1006/eesa.1998.1666.

  • Moore, M. N. (1985). Cellular responses to pollutants. Marine Pollution Bulletin. https://doi.org/10.1016/0025-326x(85)90003-7.

  • Moore, M. N. (2004). Diet restriction induced autophagy: A lysosomal protective system against oxidative- and pollutant-stress and cell injury. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2004.03.049.

  • Najimi, S., Bouhaimi, A., Daubèze, M., Zekhnini, A., Pellerin, J., Narbonne, J. F., & Moukrim, A. (1997). Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (south of Morocco). Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s001289900419.

  • Nasci, C., Nesto, N., Monteduro, R., & Da Ros, L. (2002). Field application of biochemical markers and a physiological index in the mussel, Mytilus galloprovincialis: Transplantation and biomonitoring studies in the lagoon of Venice (NE Italy). Marine Environment Research. https://doi.org/10.1016/s0141-1136(02)00122-8.

  • National Research Council, Committee on biological markers (1987) Environment Health Perspect, 74, 3–9.

  • Nicholson, S. (1999). Cytological and physiological biomarker responses from green mussels, Perna viridis (L.) transplanted to contaminated sites in Hong Kong coastal waters. Marine Pollution Bulletin, 39, 261–268.

    Article  CAS  Google Scholar 

  • Nicholson, S., & Lam, P. K. S. (2005). Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environment International. https://doi.org/10.1016/j.envint.2004.05.007.

  • OSPAR (1997) JAMP guidelines for general biological effects monitoring (OSPAR agreement 1997–7). OSPAR Commission, Monitoring guidelines. Ref.

  • Petrovic, S., Semencic, L., Ozretic, B., & Ozreti, M. (2004). Seasonal variations of physiological and cellular biomarkers and their use in the biomonitoring of north adriatic coastal waters (Croatia). Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2004.05.004.

  • PHEMA (2017, 2018) Yearbook on sea water quality, evaluated from hydrochemical parameters (Sea of Japan) for 2017, 2018. Primorye Hydrometeorological and environmental monitoring agency, Vladivostok, 2017, 2018 (In Russian) URL: http://www.oceanography.ru/index.php/2013-05-26-11-48-40

  • Regoli, F. (1992). Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Marine Ecology Progress Series. https://doi.org/10.3354/meps084063.

  • Regoli, F., & Principato, G. (1995). Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: Implications for the use of biochemical biomarkers. Aquatic Toxicology, 31, 143–164.

    Article  CAS  Google Scholar 

  • Regoli, F., Nigro, M., & Orlando, E. (1998). Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquatic Toxicology. https://doi.org/10.1016/s0166-445x(97)00059-3.

  • Regoli, F., Frenzilli, G., Bocchetti, R., Annarumma, F., Scarcelli, V., Fattorini, D., & Nigro, M. (2004). Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2004.03.011.

  • Schiedek, D., Broeg, K., Barsienė, J., Lehtonen, K. K., Gercken, J., Pfeifer, S., Vuontisjärvi, H., Vuorinen, P. J., Dedonyte, V., Koehler, A., Balk, L., & Schneider, R. (2006). Biomarker responses as indication of contaminant effects in blue mussel (Mytilus edulis) and female eelpout (Zoarces viviparus) from the southwestern Baltic Sea. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2005.11.013.

  • Shulkin, V. M. (2004). Metally v ekosistemakh morskikh melkovodii (heavy metals in marine shallow-water ecosystems). Vladivostok: Dalnauka (In Russian).

    Google Scholar 

  • Slobodskova, V. V., Solodova, E. E., Slinko, E. N., & Chelomin, V. P. (2010). Evaluation of the genotoxicity of cadmium in gill cells of the clam Corbicula japonica using the comet assay. Russian Journal of Marine Biology. https://doi.org/10.1134/s1063074010040103.

  • Storey, K. B. (1996). Oxidative stress: Animal adaptations in nature. Brazilian Journal of Medical and Biological Research, 29, 1715–1733.

    CAS  Google Scholar 

  • Tkalin, A. V., Lishavskaya, T. S., & Shulkin, V. M. (1998). Radionuclides and trace metals in mussels and bottom sediments around Vladivostok, Russia. Marine Pollution Bulletin, 36, 551–554.

    Article  CAS  Google Scholar 

  • Torres, M. A., Testa, С. P., Gaspari, C., Masutti, M. B., Panitz, C. M. N., Curi-Pedrosa, R., Almeida, E. A., Mascio, P. D., & Filho, D. W. (2002). Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Marine Pollution Bulletin, 44, 923–932.

    Article  Google Scholar 

  • UNEP/RAMOGE. (1999). Manual on the biomarkers recommended for the MED POL Biomonitoring Programme. Athens: UNEP.

    Google Scholar 

  • Vasanthi, L. A., Revathi, P., Babu, R. R., & Munuswamy, N. (2017). Detection of metal induced cytopathological alterations and DNA damage in the gills and hepatopancreas of green mussel Perna viridis from Ennore Estuary, Chennai, India. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2017.01.040.

  • Vashchenko, M. A. (2000). Pollution in Peter the Great Bay, Sea of Japan, and its biological consequences. Russian Journal of Marine Biology, 26, 155–166.

    Article  Google Scholar 

  • Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E., & Koehler, A. (2007). The use of biomarkers in biomonitoring: A 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. https://doi.org/10.1016/j.cbpc.2007.04.011.

  • Xiu, M., Pan, L., & Jin, Q. (2014). Bioaccumulation and oxidative damage in juvenile scallop Chlamys farreri exposed to benzo[a]pyrene, benzo[b]fluoranthene and chrysene. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.cbpc.2009.01.00610.1016/j.ecoenv.2014.05.016.

  • Yoshinaga, M., Ueki, T., & Michibata, H. (2007). Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochimica et Biophysica Acta General Subjects. https://doi.org/10.1016/j.bbagen.2007.05.007.

  • Zvyagintsev, A. Y. (2005). Morskoye obrastaniye v severo-zapadnoy chasti Tikhogo okeana (marine fouling in the north-west part of Pasific Ocean). Vladivostok: Dalnauka (In Russian).

    Google Scholar 

Download references

Funding

The study was supported by the state budgetary topic of research work for the V.I. Il’ichev Pacific Oceanological Institute, FEB RAS (no. AAAA-A17-117030110038-5) and the Russian Foundation for Basic Research grant (project no. 19-31-27001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Istomina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 1
figure 1

Location of the sampling sites in Peter the Great Bay of the Japan Sea (Russia)

Fig. 2
figure 2

The distribution of comets by classes (C0–C4) in the digestive gland (a) and gills (b) of M. trossulus from a polluted site (Zolotoy Rog Bay) and reference site (Vostok Bay)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomina, A., Mazur, A., Chelomin, V. et al. The Different Biomarkers in the Assessment of the Marine Environmental Quality Using the Representative Species Mytilus trossulus. Water Air Soil Pollut 231, 403 (2020). https://doi.org/10.1007/s11270-020-04782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04782-w

Keywords

Navigation