Alternative Deicers for Winter Road Maintenance—A Review

Abstract

The use of roadway deicers, typically made of sand or salt, is essential for achieving safe roadway conditions by reducing ice and snow. Unfortunately, deicers can have detrimental effects on the surrounding infrastructure and environment. Traditional inorganic deicers, such as abrasives and chloride salts, have the most widespread usage, but recent concerns of the negative effects of chlorides on the environment have led to emerging alternative organic deicers. This paper provides a comprehensive review of the effectiveness and impacts of organic deicers including agro-based products, acetates, formates, glycols, and succinates. The benefits and negative impacts on the road, environment, and infrastructure are reviewed, as well as the performance of each deicer for snow and ice control on roadways. The environmental concerns of the organic deicers are discussed, including the largest environmental concern: the increase in biological oxygen demand (BOD) to receiving water bodies. The impact of deicers on metals and infrastructure is presented as it varies considerably for each alternative deicer. Finally, opportunities and challenges to implementing alternative deicers in the field is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data and materials used during the study appear in the submitted article.

References

  1. Akin, M., Huang, J., Shi, X., Veneziano, D., Williams, D. (2013). Snow removal at extreme temperatures. Clear Roads Final Report. Bozeman, MT. Project 99085/CR11-04.

  2. Alizadeh, H., & Berglund, K. A. (2015). Comparison of corrosion effects of potassium succinate, road salt, and calcium magnesium acetate on aluminum and steel. Int. J. Res. Eng. Adv. Technol., 3, 129–138.

    Google Scholar 

  3. Amrhein, C., Strong, J. E., & Mosher, P. A. (1992). Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environmental Science & Technology, 26(4), 703–709.

    Article  CAS  Google Scholar 

  4. Andrey, J. (2010). Long-term trends in weather-related crash risks. Journal of Transport Geography, 18, 247–258. https://doi.org/10.1016/j.jtrangeo.2009.05.002.

    Article  Google Scholar 

  5. Bang, S. S., & Johnston, D. (1998). Environmental effects of sodium acetate / formate deicer, Ice Shear. Archives of Environ. Contam. Toxicol., 35, 580–587. https://doi.org/10.1007/s002449900419.

    Article  CAS  Google Scholar 

  6. Berglund, K. A., Alizadeh, H., and Dunuwila, D. D. (2001). Deicing compositions and methods of use. United States Patent, US 6,287,480 B1. Washington, DC: U.S. Patent and Trademark Office.

  7. Berglund, K. A., Dunuwila, D. D., and Alizadeh, H. (2003). Windshield washer and deicer. United States Patent, US 6,635,188 B1. Washington, DC: U.S. Patent and Trademark Office.

  8. Blincoe, L. J., Miller, T. R., Zaloshnja, E., & Lawrence, B. A. (2015). The economic and societal impact of motor vehicle crashes, 2010. (Revised) National Highway Traffic Safety Administration. Report No. DOT HS 812 013.

  9. Boyles, W. (1997). Chemical oxygen demand. Technical information series, Booklet,(9), 24.

  10. Bryson, G. M., & Barker, A. V. (2002). Sodium accumulation in soils and plants along Massachusetts roadsides. Communications in Soil Science and Plant Analysis, 33, 67–78. https://doi.org/10.1081/CSS-120002378.

    Article  CAS  Google Scholar 

  11. Burkett, A., Gurr, N., (2004). Icy roads management with calcium magnesium acetate to meet environmental and customer expectations in New Zealand. In: Transportation Research Board (Ed.), Proc. 6th Intl. Symposium on Snow Removal and Ice Control Technology. Transportation Research Circular E-C063: Snow and Ice Control Technology. SNOW04-050, 267–277.

  12. Castro, S., Davis, L. C., & Erickson, L. E. (2005). Natural, cost-effective, and sustainable alternatives for treatment of aircraft deicing fluid waste. Environmental Progress, 24, 26–33. https://doi.org/10.1002/ep.10059.

    Article  CAS  Google Scholar 

  13. CDOT (2017). Colorado Department of Transportation Standards for Deicing Products, 2017 Edition. https://www.codot.gov/travel/winter-driving/assets/liquid-deicing-standards

  14. Chang, N.Y., Pearson, W., Chang, J.L.J., Gross, A., Meyer, M., Jolly, M., Vang, B., Samour, H. (1995). Environmentally sensitive sanding and deicing practices, Final Report. Colorado Department of Transportation, Denver, CO. Report No. CDOT-CTI-95-5.

  15. Clear Roads (2020). Clear roads qualified product list – products. Retrieved from https://clearroads.org/wp-content/uploads/QPL_Updated-February-25-2020.pdf.

  16. Corsi, S. R., Geis, S. W., Bowman, G., Failey, G. G., & Rutter, T. D. (2009). Aquatic toxicity of airfield-pavement deicer materials and implications for airport runoff. Environmental Science & Technology, 43, 40–46. https://doi.org/10.1007/s00467-013-2518-4.

    Article  CAS  Google Scholar 

  17. Corsi, S. R., Mericas, D., & Bowman, G. T. (2012). Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants. Water, Air, and Soil Pollution, 223, 2447–2461. https://doi.org/10.1007/s11270-011-1036-x.

    Article  CAS  Google Scholar 

  18. Cui, N., Fay, L., & Shi, X. (2015). Review on the toxicological effects of chloride-based deicers: Impacted environments and assessment methods. In Environmental Sustainability in Transportation Infrastructure, Fairbanks AK, August 2nd to 5th, 256-271.

  19. Du, S., Akin, M., Bergner, D., Xu, G., & Shi, X. (2019). Synthesis of material application methodologies for winter operations. Clear Roads. Report No., CR15–CR01.

  20. Environment Canada (2001). Road Salts, priority substances list assessment report: road salts. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/canadian-environmental-protection-act-1999- priority-substances-list-assessment-report-road-salts.html. Accessed 19 October 2019.

  21. EPA (2018). Substance details report https://iaspub.epa.gov/sor_internet/registry/substreg/searchandretrieve/advancedsearch/search.do?details=displayDetails&selectedSubstanceId=47475. Accessed 12 December 2018.

  22. EPA. (2019a). Integrated science assessment (ISA) for particulate matter. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-19/188, 2019.

  23. EPA (2019b). Secondary drinking water standards: guidance for nuisance chemicals. https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals Accessed 17 November 2019.

  24. Essarras, A., Pazzi, M., Dadour, I. R., & Magni, P. A. (2018). The effect of antifreeze (ethylene glycol) on the survival and the life cycle of two species of necrophagous blowflies (Diptera: Calliphoridae). Science & Justice, 58, 85–89. https://doi.org/10.1016/j.scijus.2017.12.008.

    Article  Google Scholar 

  25. Farnam, Y., Dick, S., Wiese, A., Davis, J., Bentz, D., & Weiss, J. (2015). The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials. Cement and Concrete Composites, 64, 1–15.

    Article  CAS  Google Scholar 

  26. Fay, L., Akin, M. (2018). Investigation of alternative deicers for snow and ice control. Center for Environmentally Sustainable Transportation in Cold Climates, Fairbanks, AK.

  27. Fay, L., & Shi, X. (2011). Laboratory investigation of performance and impacts of snow and ice control chemicals for winter road service. Journal of Cold Regions Engineering, 25(3), 89–114.

    Article  Google Scholar 

  28. Fay, L., & Shi, X. (2012). Environmental impacts of chemicals for snow and ice control: state of the knowledge. Water, Air, and Soil Pollution, 223, 2751–2770. https://doi.org/10.1007/s11270-011-1064-6.

    Article  CAS  Google Scholar 

  29. Fay, L., Volkening, K., Gallaway, C., & Shi, X. (2008). Performance and impacts of current deicing and anti-icing products: user perspective versus experimental data. In Transportation Research Board 87th Annual Meeting, Washington D.C., January 13th to 17th.

  30. Fay, L., Nazari, H.M., Jungwirth, S., Muthumani, A., Cui, N., Shi, X., Bergner, D., Venner, M. (2015). Manual of environmental best practices for snow and ice control. Clear Roads Final Report, Bozeman, MT. project 99006/CR13-01.

  31. Findlay, S. E., & Kelly, V. R. (2011). Emerging indirect and long-term road salt effects on ecosystems. Annals of the New York Academy of Sciences, 1223(1), 58–68.

    Article  CAS  Google Scholar 

  32. Fischel, M., (2001). Evaluation of selected deicers based on a review of the literature, Colorado Department of Transportation. Report No. CDOT-DTD-R-2001-15.

  33. Fortin Consulting Incorporated (2014). Chloride free snow and ice control material. TRS 1411.

  34. Freeman, A. I., Surridge, B. W. J., Matthews, M., Stewart, M., & Haygarth, P. M. (2015). Understanding and managing de-icer contamination of airport surface waters: a synthesis and future perspectives. Environmental Technology and Innovation, 3, 46–62. https://doi.org/10.1016/j.eti.2015.01.001.

    Article  Google Scholar 

  35. Frolova, E. A., Kondakov, D. F., Nikolaev, V. V., Tin, O. P., & Danilov, V. P. (2015). Phase equilibria in the sodium formate – potassium formate – water system below 0 ° C and the anti icing properties of salt compositions. Theoretical Foundations of Chemical Engineering, 49, 719–720. https://doi.org/10.1134/S004057951505005X.

    Article  CAS  Google Scholar 

  36. Fu, L., Omer, R., & Jiang, C. (2012). Field test of organic deicers as prewetting and anti-icing agents for winter road maintenance. Journal of the Transportation Research Board, 2272, 130–135. https://doi.org/10.3141/2272-15.

    Article  Google Scholar 

  37. Giebson, C., Seyfarth, K., & Stark, J. (2010). Influence of acetate and formate-based deicers on ASR in air field concrete pavements. Cement and Concrete Research, 40, 537–545. https://doi.org/10.1016/j.cemconres.2009.09.009.

    Article  CAS  Google Scholar 

  38. Hanslin, H. M. (2011). Short-term effects of alternative de-icing chemicals on tree sapling performance. Urban Forestry & Urban Greening, 10, 53–59. https://doi.org/10.1016/j.ufug.2010.08.001.

    Article  Google Scholar 

  39. Harless, M. L., Huckins, C. J., Grant, J. B., & Pypker, T. G. (2011). Effects of six chemical deicers on larval wood frogs (Rana sylvatica). Environmental Toxicology and Chemistry, 30(7), 1637–1641.

    Article  CAS  Google Scholar 

  40. Harris, G. P., Turner, R., & Nelson, R. J. (1993). Field test comparison of calcium magnesium acetate to salt. J. Trans. Eng., 119(6), 889–904.

    Article  Google Scholar 

  41. Hassan, Y., Abd El Halim, A. O., Razaqpur, A. G., Bekheet, W., & Farha, M. H. (2002). Effects of runway deicers on pavement materials and mixes: comparison with road salt. Journal of Transportation Engineering, 128, 385–391. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:4(385).

    Article  Google Scholar 

  42. Hellstén, P., & Nystén, T. (2003). Migration of alternative de-icers in unsaturated zone of aquifers - in vitro study. Water Science and Technology., 48(9), 45–50.

    Article  Google Scholar 

  43. Hellstén, P. P., Kivimäki, A. L., Miettinen, I. T., Mäkinen, R. P., Salminen, J. M., & Nystén, T. H. (2005a). Degradation of potassium formate in the unsaturated zone of a sandy aquifer. Journal of Environmental Quality, 34, 1665–1671. https://doi.org/10.2134/jeq2004.0323.

    Article  CAS  Google Scholar 

  44. Hellstén, P. P., Salminen, J. M., Jørgensen, K. S., & Nystén, T. H. (2005b). Use of potassium formate in road winter deicing can reduce groundwater deterioration. Environmental Science & Technology, 39(13), 5095–5100. https://doi.org/10.1021/es0482738.

    Article  CAS  Google Scholar 

  45. Hintz, W. D., & Relyea, R. A. (2019). A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biology, 64(6), 1081–1097.

    Article  Google Scholar 

  46. Horner, R. R., & Brenner, M. V. (1992). Environmental evaluation of calcium magnesium acetate for highway deicing applications. Resources, Conservation and Recycling, 7, 213–237.

    Article  Google Scholar 

  47. Hossain, S. K., Fu, L., & Lake, R. (2015). Field evaluation of the performance of alternative deicers for winter maintenance of transportation facilities. Canadian Journal of Civil Engineering, 42(7), 437–448.

    Article  Google Scholar 

  48. Hosseini, F., Hossain, S. K., & Fu, L. (2017). Bio-based materials for improving winter pavement friction. Canadian Journal of Civil Engineering, 44(2), 99–105.

    Article  Google Scholar 

  49. Huttunen-Saarivirta, E., Kuokkala, V. T., Kokkonen, J., & Paajanen, H. (2009). Corrosion behaviour of aircraft coating systems in acetate- and formate-based de-icing chemicals. Materials and Corrosion, 60, 173–191. https://doi.org/10.1002/maco.200805038.

    Article  CAS  Google Scholar 

  50. Huttunen-Saarivirta, E., Korpiniemi, H., Kuokkala, V. T., & Paajanen, H. (2013). Corrosion of cadmium plating by runway de-icing chemicals: study of surface phenomena and comparison of corrosion tests. Surf. Coatings Technol., 232, 101–115. https://doi.org/10.1016/j.surfcoat.2013.04.060.

    Article  CAS  Google Scholar 

  51. Jamshidi, A., Goodarzi, A. R., & Razmara, P. (2020). Long-term impacts of road salt application on the groundwater contamination in urban environments. Environmental Science and Pollution Research, 1–16.

  52. Jones, P. H., Jeffrey, B. A., Walter, P. K., & Hutchon, H. (1992). Environmental impact of road salting. In F. M. D’Itri (Ed.), Chemical deicers and the environment (pp. 1–116). Boca Raton: Lewis Publishers.

    Google Scholar 

  53. Joutti, A., Schultz, E., Pessala, P., Nystén, T., & Hellstén, P. (2003). Ecotoxicity of alternative de-icers. J. Soils Sediments, 3, 269–272. https://doi.org/10.1065/jss2003.07.080.

    Article  CAS  Google Scholar 

  54. Jungwirth, S., & Shi, X. (2017). Laboratory investigation of naturally sourced liquid deicers and subsequent decision support. Journal of Cold Regions Engineering, 31(3), 06017002.

    Article  Google Scholar 

  55. Kahl, S., 2002. Agricultural by-products for anti-icing and deicing use in Michigan. Research Report for Michigan Department of Transportation. Research Report R1418.

  56. Kelly, V. R., Cunningham, M. A., Curri, N., Findlay, S. E., & Carroll, S. M. (2018). The distribution of road salt in private drinking water wells in a southeastern New York suburban township. Journal of Environmental Quality, 47(3), 445–451.

    Article  CAS  Google Scholar 

  57. Kelting, D.L., Laxson, C.L. (2010). Review of effects and costs of road de-icing with recommendations for winter road management in the adirondack park. Adirondack Watershed Institute Report # AWI2010-01.

  58. Ketcham, S.A., Minsk, D.L., Blackburn, R.R., Fleege, E.J. (1996). Manual of practice for an effective anti-icing program: A guide for highway winter maintenance personnel. Publication No. FHWA-RD-9-202. Prepared for the Federal Highway Administration by US Army Cold Regions Research and Engineering Laboratory.

  59. Kolesar, K. R., Mattson, C. N., Peterson, P. K., May, N. W., Prendergast, R. K., & Pratt, K. A. (2018). Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmospheric Environment, 177, 195–202. https://doi.org/10.1016/j.atmosenv.2018.01.008.

    Article  CAS  Google Scholar 

  60. Kuemmel, D.E. (1994). Managing roadway snow and ice control operations. National Cooperative Highway Research Program Synthesis 207, National Academy Press.

  61. Kuemmel, D., & Hanbali, R. (1992). Accident analysis of ice control operations final report. Milwaukee: The Salt Institute.

    Google Scholar 

  62. Laforte, C., & Tremblay, M. M. (2017). Comparative evaluation of the anti-icing protection time of runway deicers using infrared thermography. Cold Regions Science and Technology, 138, 57–62. https://doi.org/10.1016/j.coldregions.2017.03.003.

    Article  Google Scholar 

  63. Laforte, C., Wesley, N., Tremblay, M., (2015) Anti-icing comparative performance skid test for runway deicers. SAE Technical Paper 2015-01-2076, https://doi.org/10.4271/2015-01-2076.

  64. Lee, H., Cody, R. D., Cody, A. M., Spry, P. G. (2000). Effects of various deicing chemicals on pavement concrete deterioration. In Mid-Continent Transportation Symposium 2000, Ames, IA, May 15th to May 16th 151-155.

  65. Levelton Consultants. (2007). Guidelines for the selection of snow and ice control materials to mitigate environmental impacts. NHCRP 577. National Research Council, Washington D.C.

  66. Ma, H., Yu, H., Cao, W., Bai, K., Zhou, P., & Han, L. (2011). Freeze-thaw durability of Portland cement concrete subjected to aircraft deicer. Advances in Materials Research, 152–153, 1856–1861. https://doi.org/10.4028/www.scientific.net/AMR.152-153.1856.

    Article  CAS  Google Scholar 

  67. Ma, H., Yu, H., Li, C., Tan, Y., Cao, W., & Da, B. (2018). Freeze–thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer. Construction and Building Materials, 187, 197–204.

    Article  CAS  Google Scholar 

  68. Manning, D. G., & Perchanok, M. S. (1993). Trials of calcium magnesium acetate deicer on highways in Ontario. In Transportation Research Record No. 1387, Snow Removal and Ice Control Technology; Papers presented at the 3rd International Symposium on Snow Removal and Ice Control Technology, September 14-18, (71-78).

  69. Math, S., Wingard, D., & Rangaraju, P. R. (2011). Assessing potential reactivity of aggregates in presence of potassium acetate deicer. Transportation Research Record: Journal of the Transportation Research Board, 2232, 10–24. https://doi.org/10.3141/2232-02.

    Article  Google Scholar 

  70. MDOT. (2017). Michigan Department of Transportation Contract No 171–18000000159. https://www.michigan.gov/documents/localgov/180000000159_610476_7.pdf. Accessed 11 January 2020.

  71. Muthumani, A., & Shi, X. (2017). Effectiveness of liquid agricultural by-products and solid complex chlorides for snow and ice control. Journal of Cold Regions Engineering, 31, 04016006. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000112.

    Article  Google Scholar 

  72. Muthumani, A., Fay, L., Bergner, D., & Shi, X. (2015). Understanding the effectiveness of non-chloride liquid agricultural by-products and solid complex chloride/mineral products. Clear Road Report, 13–02.

  73. Nadezhdin, A., Mason, D. A., Malric, B., Lawless, D. F., & Fedosoff, J. P. (1988). The effect of deicing chemicals on reinforced concrete. Journal of the Transportation Research Board, 1157, 31–37.

    Google Scholar 

  74. National Academies of Sciences, Engineering, and Medicine, (1991). Highway deicing: comparing salt and calcium magnesium acetate -- special report 235, The National Academies Press. DC. https://doi.org/10.17226/11405.

  75. Nazari, M. H., & Shi, X. (2019). Developing renewable agro-based anti-icers for sustainable winter road maintenance operations. Journal of Materials in Civil Engineering, 31(12), 04019299.

    Article  Google Scholar 

  76. Nazari, M. H., Fay, L., Jungwirth, S., & Shi, X. (2015). Water quality implications and the toxicological effects of chloride-based deicers. In Environmental sustainability in transportation infrastructure, Fairbanks AK, August 2nd to 5th, 272-292.

  77. Nazari, M. H., Shi, X., Jackson, E., Zhang, Y., & Li, Y. (2017). Laboratory investigation of washing practices and bio-based additive for mitigating metallic corrosion by magnesium chloride deicer. Journal of Materials in Civil Engineering, 29(1), 04016187.

    Article  Google Scholar 

  78. Nazari, M. H., Havens, E. A., Muthumani, A., & Shi, X. (2019). Effects of processed agro-residues on the performance of sodium chloride brine anti-icer. ACS Sustainable Chemistry & Engineering, 7(16), 13655–13667.

    Article  CAS  Google Scholar 

  79. Nixon, W. (2001a). Use of abrasives in winter maintenance at the county level. Journal of the Transportation Research Board, 1741, 42–46. https://doi.org/10.3141/1741-07.

    Article  Google Scholar 

  80. Nixon, W.A., (2001b). The use of abrasives in winter maintenance: final report of project TR 434, IIHR Technical Report No. 416.. Iowa City.

  81. Nixon, W.A., Williams, A.D., 2001. A guide for selecting anti-icing chemicals. IIHR Technical Report No. 420. Iowa City.

  82. Pacific Northwest Snowfighters Association. (2010). Snow and ice chemical product specifications and test protocols for the PNS Association of British Columbia, Colorado, Idaho, Montana, Oregon, and Washington. http://pnsassociation.org/wp-content/uploads/PNSSPECS.pdf, last accessed on June 09, 2020.

  83. Pan, T. (2007). Mitigation of moisture and deicer effects on asphalt thermal cracking through polymer modification. Prepared for the US Department of Transportation Research and Innovative Technology Administration.

  84. Parker, D. (1997). Alternative snow and ice control methods: field evaluation. Oregon. Dept. of Transportation. Research Unit. No. FHWA-OR-RD-98-03.

  85. Pecher, W. T., Al Madadha, M. E., DasSarma, P., Ekulona, F., Schott, E. J., Crowe, K., Gut, B. S., & DasSarma, S. (2019). Effects of road salt on microbial communities: halophiles as biomarkers of road salt pollution. PLoS One, 14, e0221355. https://doi.org/10.1371/journal.pone.0221355.

    Article  CAS  Google Scholar 

  86. Pieper, K. J., Tang, M., Jones, C. N., Weiss, S., Greene, A., Mohsin, H., Parks, J., & Edwards, M. A. (2018). Impact of road salt on drinking water quality and infrastructure corrosion in private wells. Environmental Science & Technology, 52(24), 14078–14087.

    Article  CAS  Google Scholar 

  87. Pilgrim, K. M. (2013). Determining the aquatic toxicity of deicing materials. Clear Roads, No. Project 99083/CR11-02.

  88. Pillard, D. A., & DuFresne, D. L. (1999). Toxicity of formulated glycol deicers and ethylene and propylene glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Archives of Environmental Contamination and Toxicology, 37(1), 29–35.

    Article  CAS  Google Scholar 

  89. Pillard, D. A., Cornell, J. S., Dufresne, D. L., & Hernandez, M. T. (2001). Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Resources, 32(2), 557–560.

    Google Scholar 

  90. Potera, C. (2005). Making succinate more successful. Environmental Health Perspectives, 113, 832–835. https://doi.org/10.1289/ehp.113-a832.

    Article  Google Scholar 

  91. Public Sector Consultants Inc. (1993). The use of selected deicing materials on Michigan roads: environmental and economic impacts. Prepared for the Michigan Department of Transportation.

  92. Qiu, L., & Nixon, W. A. (2008). Effects of adverse weather on traffic crashes: systematic review and meta-analysis. Transportation Research Record, 139–146. https://doi.org/10.3141/2055-16.

  93. Ramakrishna, D. M., & Viraraghavan, T. (2005). Environmental impact of chemical deicers – a review. Water, Air, and Soil Pollution, 166, 49–63. https://doi.org/10.1007/s11270-005-8265-9.

    Article  CAS  Google Scholar 

  94. Rangaraju, P. R., & Desai, J. (2009). Effectiveness of fly ash and slag in mitigating alkali-silica reaction induced by deicing chemicals. Journal of Materials in Civil Engineering, 21(1), 19–31.

    Article  CAS  Google Scholar 

  95. Rangaraju, P. R., Sompura K. R., Olek, J. (2006). Investigation into potential of alkali-acetate-based deicers to cause alkali-silica reaction in concrete. Transportation Research Record: Journal of the Transportation Research Board, No. 1979, pp. 69–78.

  96. Rangaraju, R. R., Sompura, K. R., & Olek, J. (2007). Modified ASTM C 1293 test method to investigate potential of potassium acetate deicer solution to cause alkali-silica reaction. Transportation Research Record: Journal of the Transportation Research Board, 2020, 50–60. https://doi.org/10.3141/2020-07.

    Article  Google Scholar 

  97. Rasa, K., Peltovuori, T., & Hartikainen, H. (2006). Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Sci. Total Environ., 366, 819–825. https://doi.org/10.1016/j.scitotenv.2005.08.007.

    Article  CAS  Google Scholar 

  98. Reid, R. L. (2017). Highway engineers seek options as study shows road salt threatens freshwater lakes. Civil Engineering News, June, 26–29.

  99. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology, 27, 1892–1904. https://doi.org/10.1021/es00046a019.

    Article  CAS  Google Scholar 

  100. Roubidoux, P. Y., & Delisle, C. E. (2001). Ecotoxicological evaluation of three deicers (NaCl, NaFo, CMA)—effect on terrestrial organisms. Ecotoxicology and Environmental Safety., 48, 128–139.

    Article  CAS  Google Scholar 

  101. Ružinskas, A., Bulevičius, M., & Sivilevičius, H. (2016). Laboratory investigation and efficiency of deicing materials used in road maintenance. Transport, 31(2), 147–155.

    Article  Google Scholar 

  102. Salimi, S., Nassiri, S., & Bayat, A. (2014). Using lateral coefficient of friction to evaluate effectiveness of plowing and sanding operations. Canadian Journal of Civil Engineering, 41, 977–985. https://doi.org/10.1139/cjce-2014-0076.

    Article  Google Scholar 

  103. Salminen, J. M., Nystén, T. H., & Tuominen, S. M. (2011). Review of approaches to reducing adverse impacts of road deicing on groundwater in Finland. Water Quality Research Journal of Canada, 46(2), 166–173.

    Article  CAS  Google Scholar 

  104. Santagata, M. C., & Collepardi, M. (2000). The effect of CMA deicers on concrete properties. Cement and Concrete Research, 30, 1389–1394.

    Article  CAS  Google Scholar 

  105. Schuler, M. S., Hintz, W. D., Jones, D. K., Lind, L. A., Mattes, B. M., Stoler, A. B., et al. (2017). How common road salts and organic additives alter freshwater food webs: In search of safer alternatives. Journal of Applied Ecology, 54(5), 1353–1361.

    Article  CAS  Google Scholar 

  106. Shi, X. (2010). Winter road maintenance: best practices, emerging challenges, and research needs. J. Public Work. Infrastruct., 2, 318–326.

    Google Scholar 

  107. Shi, X., Fay, L., Gallaway, C., Volkening, K., Peterson, M., Pan, T., Creighton, A., Lawlor, C., (2009a). Evaluation anti-icing and deicing compounds using sodium chloride and magnesium chloride as baseline deicers - Phase I. Final Report for the Colorado Department of Transportation. Denver, CO. Report no. CDOT-2009-01.

  108. Shi, X., Fay, L., Yang, Z., Nguyen, T. A., & Liu, Y. (2009b). Corrosion of deicers to metals in transportation infrastructure: introduction and recent developments. Corrosion Reviews, 27, 23–52.

    Article  CAS  Google Scholar 

  109. Shi, X., Akin, M., Pan, T., Fay, L., Liu, Y., & Yang, Z. (2009c). Deicer impacts on pavement materials: introduction and recent developments. The Open Civil Engineering Journal, 3(1).

  110. Shi, X., Liu, Y., Mooney, M., Berry, M., Hubbard, B., Fay, L., & Leonard, A. B. (2010a). Effect of chloride-based deicers on reinforced concrete structures. Washington Department of Transportation. No. WA-RD 741.1.

  111. Shi, X., Fay, L., Peterson, M. M., & Yang, Z. (2010b). Freeze-thaw damage and chemical change of a Portland cement concrete in the presence of diluted deicers. Materials and Structures., 43, 933–946.

    Article  CAS  Google Scholar 

  112. Shi, X., Veneziano, D., Xie, N., & Gong, J. (2013). Use of chloride-based ice control products for sustainable winter maintenance: a balanced perspective. Cold Regions Science and Technology, 86, 104–112. https://doi.org/10.1016/j.coldregions.2012.11.001.

    Article  Google Scholar 

  113. Shi, X., et al. (2014). Evaluating snow and ice control chemicals for environmentally sustainable highway maintenance operations. J. of Trans. Eng., 140(11), 05014005.

    Article  Google Scholar 

  114. Staples, J. M., Gamradt, L., Stein, O., & Shi, X. (2004). Recommendations for winter traction materials management on roadways adjacent to bodies of water. Montana Department of Transportation. Report No. FHWA/MT-04-008/8117-19.

  115. Strifling, D. A. (2018). Reducing chloride discharges to surface water and groundwater: a menu of options for policymakers. Environ. Law, 48, 167–210.

    Google Scholar 

  116. Sucoff, E. (1975). Effect of deicing salts on woody vegetation along Minnesota roads. Minnesota Agricultural Experiment Station. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/200958.

  117. Talend, D. (2016). Salt: no easy answers. https://www.stormh2o.com/bmps/article/13021552/salt-no-easy-answers. Accessed 15 January 2020.

  118. Taylor, P., Gopalakrishnan, K., Verkade, J.G., Wadhwa, K., Kim, S. (2010). Development of an improved agricultural-based deicing product, InTrans Project Reports. IHRB Project TR-5812.

  119. Taylor, P. C., Verkade, J. G., Gopalakrishnan, K., Wadhwa, K., & Kim, S. (2014). Experimental studies on development of sustainable agricultural-based road transport deicing applications. Int.J. Traffic Transp. Eng., 4, 128–145. https://doi.org/10.7708/ijtte.2014.4(2).01.

    Article  Google Scholar 

  120. Truschke, C., Peterson, K., Van Dam, T., Peshkin, D., DeDene, C., & DeDios, R. (2011). Investigation of Portland cement concrete exposed to automated deicing solutions on Colorado’s bridge decks. Transportation Research Record, 2220(1), 1–11.

    Article  Google Scholar 

  121. Turnbull, D. A., & Bevan, J. R. (1995). The impact of airport de-icing on a river: the case of the Ouseburn, Newcastle upon Tyne. Environmental Pollution, 88, 321–332. https://doi.org/10.1016/0269-7491(95)93446-7.

    Article  CAS  Google Scholar 

  122. United States DOT. (2020). How do weather events impact roads? https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm. Accessed 12 June 2020.

  123. Vignisdottir, H. R., Ebrahimi, B., Booto, G. K., O’Born, R., Brattebø, H., Wallbaum, H., & Bohne, R. A. (2019). A review of environmental impacts of winter road maintenance. Cold Regions Science and Technology, 158, 143–153.

    Article  Google Scholar 

  124. Wang, K., Nelsen, D. E., & Nixon, W. A. (2006). Damaging effects of deicing chemicals on concrete materials. Cement and Concrete Deposits, 28, 173–188.

    Article  CAS  Google Scholar 

  125. Western Transportation Institute. (2017). Field usage of alternative deicers for snow and ice control, Minnesota DOT. TRS 1706.

  126. Xie, N., Shi, X., Zhang, Y., Muthumani, A., Fay, L. (2015). Comparing the direct costs and infrastructure implications of anti-icing strategies. Research Report for the Nevada Department of Transportation. Report No. 531-13-803.

  127. Xie, N., Shi, X., & Zhang, Y. (2017). Impacts of potassium acetate and sodium-chloride deicers on concrete. Journal of Materials in Civil Engineering, 29(3), 04016229.

    Article  Google Scholar 

  128. Yang, Z., Zhang, Y., & Shi, X. (2018). Impact of nanoclay and carbon microfiber in combating the deterioration of asphalt concrete by non-chloride deicers. Construction and Building Materials, 160, 514–525.

    Article  CAS  Google Scholar 

  129. Yonge, D., Marcoe, N. (2001). An evaluation of the impacts of highway deicers on Peshastin Creek. Technical Report for Washington State Transportation Center.

Download references

Acknowledgments

We would like to generously thank Dr. Prabhakar Clement and Dr. Armen Amirkhanian for providing comments and a detailed review of the manuscript, and Alysa Evans and Lua Kennedy for help with researching the different organic deicer alternatives. We also would like to thank the anonymous reviewers for their thorough review of the manuscript and helpful suggestions.

Funding

This work was supported by the Maryland Transportation Authority, MDTA [UA Fund 26,452].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leigh G. Terry.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terry, L.G., Conaway, K., Rebar, J. et al. Alternative Deicers for Winter Road Maintenance—A Review. Water Air Soil Pollut 231, 394 (2020). https://doi.org/10.1007/s11270-020-04773-x

Download citation

Keywords

  • Organic deicers
  • Snow and ice control
  • Chlorides
  • Environmental impacts
  • Infrastructure impacts