Different Iron Oxalate Sources as Catalysts on Pyrazinamide Degradation by the Photo-Fenton Process at Different pH Values

Abstract

The presence of emerging contaminants (EC), such as antibiotics in water bodies, is considered an environmental issue. In this work, the iron sources FeC2O4•2H2O (FOD), complexes of iron/oxalate (Fe2+/Ox), and FeSO4 as reference were evaluated as catalysts on the degradation of pyrazinamide (10 mg L−1) antibiotic by the photo-Fenton process. Different parameters were studied such as initial pH value (3, 4.5, and 6), Fe2+/H2O2 molar ratio (1:20, 1:30, and 1:40), and Fe2+/Ox with different molar ratios (1:3, 1:6, and 1:9). The best performance was achieved with a 1:20 Fe2+/H2O2 molar ratio using FeSO4 and FOD showing similar results as FeSO4 catalyst at pH 3 and 4.5. The degradation rate at pH 6 was enhanced using Fe2+/Ox (1:3) compared to FeSO4, and this behavior was explained by Fenton reactants consumption and the oxalate use. The iron source FOD exhibited a poor performance at pH 6 compared with FeSO4; however, FOD activity was notably increased at pH 6 using a greater amount of catalyst, reaching 86.8% of pyrazinamide degradation in 60 min, even higher than using Fe2+/Ox 1:3 complex (68.9%), which makes it a suitable catalyst for the degradation of pyrazinamide by the photo-Fenton process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alalm, M. G., Tawfik, A., & Ookawara, S. (2015). Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. Journal of Environmental Chemical Engineering, 3, 46–51.

    CAS  Google Scholar 

  2. Arhoutane, M. R., Yahya, M. S., Karbane, M. E., Guessous, A., Chakchak, H., & El Kacemi, K. (2019). Removal of pyrazinamide and its by-products from water: treatment by electro-Fenton process and feasibility of a biological post-treatment. Mediterranean Journal of Chemistry, 8(1), 53–65.

    CAS  Google Scholar 

  3. Chen, Y., Xi, X., Yu, G., Cao, Q., Wang, B., VINCE, F., & Hong, Y. (2015). Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment. Frontiers of Environmental Science & Engineering, 9(3), 394–401.

    CAS  Google Scholar 

  4. Chen, N., Wan, Y., Zhan, G., Wang, X., Li, M., Zhang, L. (2020) Simulated solar light driven roxarsone degradation and arsenic immobilization with hematite and oxalate. Chemical Engineering Journal. In press, https://doi.org/10.1016/j.cej.2019.123254.

  5. Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: Environmental, 209, 358–371.

    CAS  Google Scholar 

  6. Conte, L. O., Schenone, A. V., & Alfano, O. M. (2016). Photo-Fenton degradation of the herbicide 2,4-in aqueous medium at pH conditions close to neutrality. Journal of Environmental Management, 170, 60–69.

    CAS  Google Scholar 

  7. D’Antonio, M. C., Wladimirsky, A., Palacios, D., Coggiola, L., González-Baró, A. C., & Baran, E. J. (2009). Spectroscopic investigations of iron(II) and iron(III) oxalates. Journal of the Brazilian Chemical Society, 20(3), 445–450.

    Google Scholar 

  8. Das, S., & Hendry, M. J. (2011). Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290(3–4), 101–108.

    CAS  Google Scholar 

  9. De Lima Perini, J. A., Perez-Moya, M., & Nogueira, R. F. P. (2013). Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. Journal of Photochemistry and Photobiology A: Chemistry, 259, 53–58.

    Google Scholar 

  10. De Luca, A., Dantas, R. F., & Esplugas, S. (2014). Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 61, 232–242.

    Google Scholar 

  11. Dias, I. N., Souza, B. S., Pereira, J. H. O. S., Moreira, F. C., Dezotti, M., Boaventura, R. A. R., & Vilar, V. J. P. (2014). Enhancement of the photo-Fenton reaction at near neutral pH through the use of ferrioxalate complexes: a case study on trimethoprim and sulfamethoxazole antibiotics removal from aqueous solutions. Chemical Engineering Journal, 247, 302–313.

    CAS  Google Scholar 

  12. Edwards, H. G. M., & Russell, N. C. (1998). Vibrational spectroscopic study of iron(II) and iron(III) oxalates. Journal of Molecular Structure, 443(1–3), 223–231.

    CAS  Google Scholar 

  13. Eisenberg, G. M. (1943). Colorimetric determination of hydrogen peroxide. Industrial and Engiinering Chemistry, 15(5), 327–328.

    CAS  Google Scholar 

  14. Expósito, A. J., Monteagudo, J. M., Durán, A., San Martín, I., & González, L. (2018). Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. Journal of Hazardous Materials, 342, 597–605.

    Google Scholar 

  15. Fan, X., Zhang, L., Li, M., Wang, M., Zhou, X., Cheng, R., et al. (2016). α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations. Science China Materials, 59(7), 574–580.

    CAS  Google Scholar 

  16. Guevara-Almaraz, E., Hinojosa-Reyes, L., Caballero-Quintero, A., Ruiz-Ruiz, E., Hernández-Ramírez, A., & Guzmán-Mar, J. L. (2015). Potential of multisyringe chromatography for the on-line monitoring of the photocatalytic degradation of antituberculosis drugs in aqueous solution. Chemosphere, 121, 68–75.

    CAS  Google Scholar 

  17. Hu, L., Wang, P., Xiong, S., Chen, S., Yin, X., Wang, L., & Wang, H. (2019). The attractive efficiency contributed by the in-situ reactivation of ferrous oxalate in heterogeneous Fenton process. Applied Surface Science, 467–468, 185–192.

    Google Scholar 

  18. Jeong, J., & Yoon, J. (2004). Dual roles of CO2− for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Research, 38(16), 3531–3540.

  19. Jing, J., Liu, M., Colvin, V. L., Li, W., & Yu, W. W. (2011). Photocatalytic degradation of nitrogen-containing organic compounds over TiO2. Journal of Molecular Catalysis A: Chemical, 351, 17–28.

    CAS  Google Scholar 

  20. Jo, W. K., & Natarajan, T. S. (2015). Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chemical Engineering Journal, 281, 549–565.

    CAS  Google Scholar 

  21. Jung, E., & Baek, K. (2019). Selective recovery of ferrous oxalate and removal of arsenic and other metals from soil-washing wastewater using a reduction reaction. Journal of Cleaner Production, 221, 635–643.

    Google Scholar 

  22. Kaur, J., & Pal, B. (2013). Photocatalytic degradation of N-heterocyclic aromatics-effects of number and position of nitrogen atoms in the ring. Environmental Science and Pollution Research, 20(6), 3956–3964.

    CAS  Google Scholar 

  23. Kwan, C. Y., & Chu, W. (2007). The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere, 67(8), 1601–1611.

    CAS  Google Scholar 

  24. Lee, J., Kim, J., & Choi, W. (2014). Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions. Journal of Hazardous Materials, 274, 79–86.

    CAS  Google Scholar 

  25. Li, K., Liang, Y., Yang, J., Yang, G., & Xie, X. (2018). α-Ferrous oxalate dihydrate: an Fe-based one-dimensional metal organic framework with extraordinary photocatalytic and Fenton activities. Catalysis Science & Technology, 8, 6057–6061.

    CAS  Google Scholar 

  26. Liu, Z. J., Liu, W., Wang, Y., & Guo, M. L. (2016, 178). Preparation of β-ferrous oxalate dihydrate layered nanosheets by mechanochemical method and its visible-light-driven photocatalytic performance. Materials Letters, 83, –86.

  27. Liu, Y., et al. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 192, 150–155.

    CAS  Google Scholar 

  28. Liu, F., Peng, C., Wilson, B. P., & Lundström, M. (2019). Oxalic acid recovery from high iron oxalate waste solution by a combination of ultrasound-assisted conversion and cooling crystallization. ACS Sustainable Chemistry & Engineering, 7, 17372–17378.

    CAS  Google Scholar 

  29. Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641.

    Google Scholar 

  30. Magwira, C. A., Aneck-Hahn, N., & Taylor, M. B. (2019). Fate, occurrence and potential adverse effects of antimicrobials used for treatment of tuberculosis in the aquatic environment in South Africa. Environmental Pollution, 254, 112990.

    Google Scholar 

  31. Manenti, D. R., Soares, P. A., Módenes, A. N., Espinoza-Quiñones, F. R., Boaventura, R. A. R., Bergamasco, R., et al. (2015). Insights into solar photo-Fenton process using iron(III)-organic ligand complexes applied to real textile wastewater treatment. Chemical Engineering Journal, 266, 203–212.

    CAS  Google Scholar 

  32. Monteagudo, J. M., Durán, A., Culebradas, R., San Martín, I., & Carnicer, A. (2013). Optimization of pharmaceutical wastewater treatment bysolar/ferrioxalate photocatalysis. Journal of Environmental Management, 128, 210–219.

    CAS  Google Scholar 

  33. Muñoz del Carpio-Toia, A., Sánchez-Pérez, H. J., Verges de López, C., López-Dávila, L. M., Sotomayor-Saavedra, M. A., & Sorokin, P. (2018). Tuberculosis en América Latina y el Caribe: reflexiones desde la bioética. Persona y bioética, 22(2), 331–357.

    Google Scholar 

  34. Nogueira, A. A., Souza, B. M., Dezotti, M. W. C., Boaventura, R. A. R., & Vilar, V. J. P. (2017). Ferrioxalate complexes as strategy to drive a photo-Fenton reaction at mild pH conditions: a case study on levofloxacin oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 345, 109–123.

    CAS  Google Scholar 

  35. Pannu, A. P. S., Lee, S., & Lee, Y. (2012). Diaquabis(pyrazine-2-carboxamide-κ 2N1,O) cobalt(II) dinitrate. Acta Crystallographica Section E Structure Reports Online, 68(4), m512–m513.

    CAS  Google Scholar 

  36. Pehkonen, S. (1995). Determination of the oxidation states of iron in natural waters. A review. Analyst, 120, 2655–2663.

    CAS  Google Scholar 

  37. Pereira, J. H. O. S., Queirós, D. B., Reis, A. C., Nunes, O. C., Borges, M. T., Boaventura, R. A. R., et al. (2014). Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: application to oxytetracycline degradation. Chemical Engineering Journal, 253, 217–228.

    CAS  Google Scholar 

  38. Pouran, S. R., Aziz, A., & Wan Daud, W. M. A. (2015). Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. Journal of Industrial and Engineering Chemistry, 21, 53–69.

    Google Scholar 

  39. Seiberta, S., Diela, T., Welterc, J. B., de Souza, A. L., Módenes, A. N., Espinoza-Quiñones, F. R., & Borba, F. H. (2017). Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate. Journal of Environmental Chemical Engineering, 5, 4462–4470.

    Google Scholar 

  40. Shirvan, S., & Haydari Dezfuli, S. (2012). Diaquabis(nitrato-κ 2O , O ′)bis(pyrazine-2-carboxamide-κ N4 )cadmium–pyrazine-2-carboxamide (1/2). Acta Crystallographica Section E Structure Reports Online, 68(7), m1008–m1009.

    CAS  Google Scholar 

  41. Soares, P. A., Batalha, M., Souza, S. M. A., Boaventura, R. A. R., & Vilar, V. J. P. (2015). Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater. Journal of Environmental Management, 152, 120–131.

    CAS  Google Scholar 

  42. Souza, B. S., Moreira, F. C., Dezotti, M., Boaventura, R. A. R., & Vilar, V. J. P. (2014). Intensification of a solar photo-Fenton reaction at near neutral pH with ferrioxalate complexes: a case study on diclofenac removal from aqueous solutions. Chemical Engineering Journal, 256, 448–457.

    CAS  Google Scholar 

  43. Stets, S., do Amaral, B., Schneider, J. T., de Barros, I. R., de Liz, M. V., Rocha, R., Nagata, N., & Peralta-Zamora, P. (2018). Antituberculosis drugs degradation by UV-based advanced oxidation processes. Journal of Photochemistry and Photobiology A: Chemistry, 353, 26–33.

    CAS  Google Scholar 

  44. Taheran, M., Naghdi, M., Brar, S. K., Verma, M., & Surampalli, R. Y. (2018). Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology, Monitoring and Management, 10, 122–126.

    Google Scholar 

  45. Tran, N. H., Reinhard, M., & Gin, K. Y. H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207.

    CAS  Google Scholar 

  46. Villegas-Guzman, P., Giannakis, S., Torres-Palma, R. A., & Pulgarin, C. (2017). Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Applied Catalysis B: Environmental, 205, 219–227.

    CAS  Google Scholar 

  47. Wang, G., Zhou, A., & Xu, Q. (2019). α-Ferrous oxalate with di ff erent micro scale: synthesis and catalytic degradation e ff ect to rhodamine B., 91, 54–60.

  48. Xiao, D., Guo, Y., Lou, X., Fang, C., Wang, Z., & Liu, J. (2014). Distinct effects of oxalate versus malonate on the iron redox chemistry: implications for the photo-Fenton reaction. Chemosphere, 103, 354–358.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Facultad de Ciencias Químicas of the Universidad Autónoma de Nuevo León. We also thank F. Espiricueta Candelaria for the technical support in HPLC analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minerva Villanueva-Rodríguez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conde-Morales, I.I., Hinojosa-Reyes, L., Guzmán-Mar, J.L. et al. Different Iron Oxalate Sources as Catalysts on Pyrazinamide Degradation by the Photo-Fenton Process at Different pH Values. Water Air Soil Pollut 231, 425 (2020). https://doi.org/10.1007/s11270-020-04768-8

Download citation

Keywords

  • Degradation
  • Emerging contaminant
  • Humboldtine
  • Oxalate
  • Photo-Fenton process
  • Pyrazinamide