Skip to main content
Log in

A Novel Solid Platform–Based Ag Nanoparticles Chemically Impregnated Activated Carbon for Selective Separation of Tungstate Species in Water: Kinetics and Thermodynamic Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The level of tungstate in freshwater is disturbing due to its toxicity and its impact to human health. Thus, the current study explores the use of Ag nanoparticle (AgNP)–treated activated carbon (AgNPs/AC) nanocomposite as solid phase extractor (SPE) for removal of trace levels of tungstate ions in water. The AgNPs/AC was synthesized by chemical binding of Ag nanoparticles onto AC. The microstructure image indicated that the AgNPs were uniformly dispersed on AC surface and thus maintaining high surface area. Scanning electron micrographs of AgNPs/AC revealed a three-dimensional structure which is suitable as SPE. The AgNPs/AC nanocomposite was used as a low-cost and effective SPE for tungstate removal from water. Adsorption of tungstate from aqueous media reached maximum at pH ≈ 4 and reached equilibrium in < 20 min. Tungstate sorption followed pseudo-second-order kinetic with an overall rate constant (k) of 0.72 min.−1 The negative values of ΔH and ΔG are interpreted as exothermic and spontaneous reaction of tungstate sorption by the adsorbent, respectively. The positive value of ΔS (R2 = 0.999) reflected good absorption and/or adsorption of the oxyanion [WO4]2− as an ion associate with the bulky cations and the surface area available in the nanocomposite. The sorbent AgNPs/AC was also packed column for preconcentration of trace levels of tungstate in tap water samples. Tungstate species were satisfactorily recovered with NaOH (1.0 mol L−1) and subsequently ICP-OES analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acevedo, S., Arevalo-Fester, J., Galicia, L., Atencio, R., Plaza, E., & Gonzalez, E. (2014). Efficiency study of silver nanoparticles (AgNPs) supported on granular activated carbon against Escherichia coli. Journal of Nanomedicine Research, 1, 00009.

    Google Scholar 

  • Adusumalli, V. N. K. B., Runowski, M., Lis, S. (2020). 3,5-Dihydroxy benzoic acid-capped CaF2:Tb3+ nanocrystals as luminescent probes for the WO42− ion in aqueous solution, cite ACs Omega. https://doi.org/10.1021/acsomega.9b03956

  • Afkhami, A., & Norooz-Asl, R. (2009). Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346, 52–57.

    CAS  Google Scholar 

  • Afkhami, A., Madrakian, T., & Amini, A. (2009). Mo (VI) and W (VI) removal from water samples by acid-treated high area carbon cloth. Desalination, 243, 258–264.

    CAS  Google Scholar 

  • Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112, 5073–5091.

    CAS  Google Scholar 

  • Almeida, J., Craveiro, R., Faria, P., Silva, A. S., Mateus, E. P., Barreiros, S., Paiva, A., & Ribeiro, A. B. (2020). Electrodialytic removal of tungsten and arsenic from secondary mine resources—deep eutectic solvents enhancement. Science of the Total Environment, 710(1–9), 136364.

    CAS  Google Scholar 

  • Al-Qodah, Z., & Shawabkah, R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering, 26, 127–136.

    CAS  Google Scholar 

  • Bazel, Y., Lešková, M., Rečlo, M., Šandrejová, J., Simon, A., Fizer, M., & Sidey, V. (2018). Structural and spectrophotometric characterization of 2-[4-(dimethylamino) styryl]-1-ethylquinolinium iodide as a reagent for sequential injection determination of tungsten. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 196, 398–405.

    CAS  Google Scholar 

  • Bednar, A., Mirecki, J., Inouye, L., Winfield, L., Larson, S., & Ringelberg, D. (2007). The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery. Talanta, 72, 1828–1832.

    CAS  Google Scholar 

  • Cao, Y., Guo, Q., Shu, Z., Jiao, C., Luo, L., Guo, W., Zhao, Q., & Yin, Z. (2019). Tungstate removal from aqueous solution by nanocrystalline iowaite: an iron-bearing layered double hydroxide. Environmental Pollution, 247, 118–127.

    CAS  Google Scholar 

  • Datta, S., Vero, S. E., Hettiarachchi, G. M., & Johannesson, K. (2017). Tungsten contamination of soils and sediments: current state of science. Current pollution reports, 3, 55–64.

    CAS  Google Scholar 

  • El-Aassar, A. H. M., Said, M. M., Abdel-Gawad, A. M., Shawky, H. A. (2013). Using silver nanoparticles coated on activated carbon granules in columns for microbiological pollutants water disinfection in Abu Rawash area, Great Cairo, Egypt, Australian journal of basic and applied sciences, Australian J Basic Applied Sciences, 7, 422–432.

  • El-Shahawi, M., & Al Khateeb, L. (2012). Spectrofluorometric determination and chemical speciation of trace concentrations of tungsten species in water using the ion pairing reagent procaine hydrochloride. Talanta, 88, 587–592.

    CAS  Google Scholar 

  • El-Shahawi, M. S., & Nassif, H. A. (2003). Retention and thermodynamic characteristics of mercury(II) complexes onto polyurethane foams. Analytica Chimica Acta, 481, 29–39.

    CAS  Google Scholar 

  • El-Shahawi, M., Othman, M., & Abdel-Fadeel, M. (2005). Kinetics, thermodynamic and chromatographic behaviour of the uranyl ions sorption from aqueous thiocyanate media onto polyurethane foams. Analytica Chimica Acta, 546, 221–228.

    CAS  Google Scholar 

  • Fayazi, M., Afzali, D., Taher, M. A., Mostafavi, A., & Gupta, V. K. (2015). Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: Optimization study. Journal of Molecular Liquids, 212, 675–685.

    CAS  Google Scholar 

  • Ghaedi, M., Heidarpour, S., Kokhdan, S. N., Sahraie, R., Daneshfar, A., & Brazesh, B. (2012). Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm study of removal process. Powder Technology, 228, 18–25.

    CAS  Google Scholar 

  • Gunawardena, J., Ziyath, A. M., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2015). Sources and transport pathways of common heavy metals to urban road surfaces. Ecological Engineering, 77, 98–102.

    Google Scholar 

  • Hall, G., Jefferson, C., & Michel, F. (1988). Determination of W and Mo in natural spring waters by ICP-AES (inductively coupled plasma atomic emission spectrometry) and ICP-MS (inductively coupled plasma mass spectrometry): application to South Nahanni river area, NWT, Canada. Journal of Geochemical Exploration, 30, 63–84.

    CAS  Google Scholar 

  • Hur, H., & Reeder, R. J. (2016). Tungstate sorption mechanisms on boehmite: Systematic uptake studies and X-ray absorption spectroscopy analysis. Journal of Colloid and Interface Science, 461, 249–260. https://doi.org/10.1016/j.jcis.2015.09.011.

    Article  CAS  Google Scholar 

  • Hussein, F. B., & Abu-Zahra, N. H. (2017). Extended performance analysis of polyurethane–iron oxide nanocomposite for efficient removal of arsenic species from water. Water Science and Technology: Water Supply, 17, 889–896.

    CAS  Google Scholar 

  • Ihsanullah, A., Abbas, A., Al-Amer, M., Laoui, T., Al-Marri Mustafa, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141–161.

    CAS  Google Scholar 

  • Ihsanullah, I., Sajid, M., Kabeer, M., Shemsi, A. M., & Atieh, M. A. (2020). First investigations on the removal of tungsten species from water using multi-walled carbon nanotubes. Water, Air, & Soil Pollution, 231, 119–130.

    CAS  Google Scholar 

  • Kavulicová, J., Mražíkováb, A., Velgosová, O., Ivánová, D., & Kubovcíková, M. (2018). Stability of synthesized silver nanoparticles in citrate and mixed gelatinic/citrate solution. Acta Polytechnica, 58(2), 104–108.

    Google Scholar 

  • Korob, R., Cohen, I., & Agatiello, O. (1976). Tungsten and molybdenum co-precipitation by α-benzoinoxime for activation analysis of tungsten. Journal of Radioanalytical Chemistry, 34, 329–333.

    CAS  Google Scholar 

  • Koutsospyros, A., Strigul, N., Braida, W., & Christodoulatos, C. (2011). Tungsten: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health. https://doi.org/10.1016/B978-0-444-52272-6.00650-4.

  • Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504.

    CAS  Google Scholar 

  • Lee, J., Mahendra, S., & Alvarez, P. J. (2010). Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations, ACS. ACS Nano, 4, 3580–3590. https://doi.org/10.1021/nn100866w.

    Article  CAS  Google Scholar 

  • Li, S., Deng, N., Zheng, F., & Huang, Y. (2003). Spectrophotometric determination of tungsten (VI) enriched by nanometer-size titanium dioxide in water and sediment. Talanta, 60, 1097–1104.

    CAS  Google Scholar 

  • Li, B., Liu, X., Zhang, X., Zou, J., Chai, W., & Xu, J. (2015). Oil-absorbent polyurethane sponge coated with KH-570-modified graphene. Journal of Applied Polymer Science, 132.

  • Li, M., Xi, X., Liu, Q., Nie, Z., & Ma, L. (2019). Direct electrolytic separation of tungsten and cobalt from waste cemented carbide and electrochemical behavior of tungsten and cobalt ions in NaF–KF molten salts. Journal of Electroanalytical Chemistry, 833, 480–489.

    CAS  Google Scholar 

  • Lima, É. C., Adebayo, M. A., & Machado, F. M. (2015). Chapter 3 " Kinetic and equilibrium models of adsorption". In C. P. Bergmann & F. M. Machado (Eds.), Carbon nanomaterials as adsorbents in environmental and biological applications ISBN : 978–3–319-18874-4 (pp. 33–69). Springer. https://doi.org/10.1007/978-3-319-18875-1_3.

  • Liu, Y., & Liu, Y.-J. (2008). Review: Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229–242.

    CAS  Google Scholar 

  • Liu, Y. (2009). Is the free energy change of adsorption correctly calculated? Journal of Chemical & Engineering Data, 54, 1981–1985.

    CAS  Google Scholar 

  • Madrakian, T., Afkhami, A., Ahmadi, M., & Bagheri, H. (2011). Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. Journal of Hazardous Materials, 196, 109–114.

    CAS  Google Scholar 

  • Maksin, D. D., Kljajević, S. O., Đolić, M. B., Marković, J. P., Ekmeščić, B. M., Onjia, A. E., & Nastasović, A. B. (2012). Kinetic modeling of heavy metal sorption by vinyl pyridine based copolymer. Hemijska Industrija, 66, 795–804.

    CAS  Google Scholar 

  • Morís, M. A., Díez, F. V., & Coca, J. (1999). Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor. Separation and Purification Technology, 17, 173–179.

    Google Scholar 

  • Morrison, S. S., Beck, C. L., Bowen, J. M., Eggemeyer, T. A., Hines, C. C., Leizers, M., Metz, L. A., Morley, S. M., Restis, K. R., & Snow, M. S. (2017). Determination of tungsten in geochemical reference material basalt Columbia River 2 by radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 311, 749–754.

    CAS  Google Scholar 

  • Narayanan, S., & Govindasamy, R. (2017). Kinetic and equilibrium studies of malachite green adsorption by low cost adsorbent. International Journal of Chemical Sciences, 115(4), 1–13.

    Google Scholar 

  • Nikkhah, A. A., Zilouei, H., Asadinezhad, A., & Keshavarz, A. (2015). Removal of oil from water using polyurethane foam modified with nanoclay. Chemical Engineering Journal, 262, 278–285.

    CAS  Google Scholar 

  • Ning, P., Cao, H., & Zhang, Y. (2009). Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923. Separation and Purification Technology, 70, 27–33.

    CAS  Google Scholar 

  • Nordberg, G. F., Fowler, B. A., & Nordberg, M. (2014). Handbook on the toxicology of metals. Academic press.

  • Parizanganeh, A., Zamani, A., Bijnavand, V., & Taghilou, B. (2014). Human nail usage as a bio-indicator in contamination monitoring of heavy metals in Dizajabaad, Zanjan province-Iran. Journal of Environmental Health Science and Engineering, 12, 147.

    Google Scholar 

  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in Colloid and Interface Science, 152, 2–13.

    CAS  Google Scholar 

  • Quin, B. F., & Brooks, R. (1973). The rapid determination of tungsten in ores and concentrates by atomic absorption spectrometry. Analytica Chimica Acta, 65, 206–209.

    CAS  Google Scholar 

  • Rao, R. A. K., & Kashifuddin, M. (2014). Kinetics and isotherm studies of Cd (II) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii). Applied Water Science, 4, 371–383.

    CAS  Google Scholar 

  • Ščančar, J., Berlinger, B., Thomassen, Y., & Milačič, R. (2015). Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC–ICP-MS. Talanta, 142, 164–169.

    Google Scholar 

  • Seiler, R. L., Stollenwerk, K. G., & Garbarino, J. R. (2005). Factors controlling tungsten concentrations in ground water Carson Desert, Nevada. Applied Geochemistry, 20, 423–441.

    CAS  Google Scholar 

  • Shahamirifard, S., Ghaedi, M., Rahimi, M., Hajati, S., Montazerozohori, M., & Soylak, M. (2016). Simultaneous extraction and preconcentration of Cu2+, Ni2+ and Zn2+ ions using Ag nanoparticle-loaded activated carbon: Response surface methodology. Advanced Powder Technology, 27, 426–435.

    CAS  Google Scholar 

  • Shin, S., & Song, J. (2011). Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon. Journal of Hazardous Materials, 194, 385–392.

    CAS  Google Scholar 

  • Strigul, N. (2010). Does speciation matter for tungsten ecotoxicology? Ecotoxicology and Environmental Safety, 73, 1099–1113.

    CAS  Google Scholar 

  • Sun, S., & Li, J. (2015). Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry. Microchemical Journal, 119, 102–107.

    CAS  Google Scholar 

  • Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176–2179.

    CAS  Google Scholar 

  • Tian, L., Zou, D., Dai, Y., & Tang, G. (2015). Determination of tungsten in tantalum–tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 110, 136–138.

    CAS  Google Scholar 

  • Ünal, Ü., & Somer, G. (2012). A new and very simple procedure for the differential pulse polarographic determination of ultra trace quantities of tungsten using catalytic hydrogen wave and application to tobacco sample. Journal of Electroanalytical Chemistry, 687, 64–70.

    Google Scholar 

  • Wang, T., Ge, Z., Wu, J., Li, B., & Liang, A.-s. (1999). Determination of tungsten in bulk drug substance and intermediates by ICP-AES and ICP-MS. Journal of Pharmaceutical and Biomedical Analysis, 19, 937–943.

    CAS  Google Scholar 

  • Weber Jr., W. J. (1984). Evolution of a technology. Journal of Environmental Engineering, 110, 899–917.

    CAS  Google Scholar 

  • Weber Jr., W. J., Morris, J. C., & Sanit, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division American Society of Civil Engineers, 89, 31–38.

    Google Scholar 

  • Xiao, C., Xiao, L., Cao, Z., & Zeng, L. (2015). Study on removal of tungsten from molybdate solutions. Canadian Metallurgical Quarterly, 54, 490–493.

    CAS  Google Scholar 

  • Yang, X. (2018). Beneficiation studies of tungsten ores—a review. Minerals Engineering, 125, 111–119.

    CAS  Google Scholar 

  • Ys, H., Mckay, G., Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Google Scholar 

  • Zarei, K., Alinejad, M., & Alizadeh, R. (2013). Simultaneous voltammetric determination of Mo (VI) and W (VI) by adsorptive differential pulse stripping method using adaptive neuro-fuzzy inference system. Journal of Analytical Chemistry, 68, 885–890.

    CAS  Google Scholar 

  • Zhu, X.-Z., Huo, G.-S., Jie, N., & Qiong, S. (2017). Removal of tungsten and vanadium from molybdate solutions using ion exchange resin. Transactions of Nonferrous Metals Society of China, 27, 2727–2732.

    CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges with thanks KACST and Deanship of Science and Research (DSR), King Abdulaziz University for technical support.

Funding

The study is financially supported by King Abdulaziz City for Science and Technology (KACST), General Directorate of Research Grant program, Kingdom of Saudi Arabia, under the grant number 1-17-01-009-0095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. El-Shahawi.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ahmadi, M.N., Saigl, Z.M., Al-khateeb, L.A. et al. A Novel Solid Platform–Based Ag Nanoparticles Chemically Impregnated Activated Carbon for Selective Separation of Tungstate Species in Water: Kinetics and Thermodynamic Study. Water Air Soil Pollut 231, 456 (2020). https://doi.org/10.1007/s11270-020-04761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04761-1

Keywords

Navigation