Skip to main content
Log in

Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, an advanced oxidation process using ozone application in a fixed-bed reactor filled with bio-rings was used for purification and disinfection of cattle wastewater (CWW) previously treated in a UASB reactor. The O3 concentration applied to the reactor was 7.8 mg L−1 (±1). Four ozonation times were tested in a batch process: T1 = 0.5 h, T2 = 1 h, T3 = 1.5 h and T4 = 2 h. The pH values tended to increase with the time of contact between liquid and gas. COD and BOD5 removal of 55 and 64% was recorded in T4. Color and turbidity were reduced by 88.5 and 93.4%, while total solids and total suspended solids were reduced by 65.7 and 93.5%, respectively. Oils and greases were completely removed from the wastewater. Electrical conductivity did not vary significantly between treatments, and its association with the presence of cations, such as Na+, Ca2+ and Mg2+, suggests good quality of the water ozonated in T4 for application in the soil, with no risk of salinization. High concentrations of nitrogen compounds were removed, but the efficiency in removing phosphate compounds was low. Coliform removal of above 99% was achieved with T3. Only the CWW ozonated in T4 is recommended for irrigation of raw-consumed crops. Based on most parameters analyzed, the CWW treated in T4 would also be suitable for discharge into water bodies according to Brazilian legislation, suggesting that this technology could be applied in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, E., Assalin, M. R., Rosa, M. A., & Durán, N. (2004). Tratamento de efluentes industriais por processos oxidativos na presença de ozônio. Química Nova, 27(5), 818–824. https://doi.org/10.1590/S0100-40422004000500023.

    Article  CAS  Google Scholar 

  • APHA (2012). American Public Health Association, American Public Health Association, American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Waste Water. 22nd edn. Washington DC.

  • Araújo, K. S. D., Antonielli, R., Gaydeczka, B., Granato, A. C., & Malpass, G. R. P. (2016). Advanced oxidation processes: A review of fundamentals and applications in the treatment of urban and industrial wastewaters. Revista Ambiente e Água, 11(2), 387–401. https://doi.org/10.4136/ambi-agua.1862.

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO irrigation and drainage paper 29 (revised 1) (p. 174). Rome: FAO.

    Google Scholar 

  • Barreto, A. C., & Campos, C. M. M. (2009). Avaliação de um sistema de irrigação autopropelido aplicando água residuária de suinocultura.Ciência e Agrotecnologia, 33, 1752–1757. https://doi.org/10.1590/S1413-70542009000700009.

    Article  Google Scholar 

  • Bhatta, R., Kayastha, R., Subedi, D. P., & Joshi, R. (2015). Treatment of wastewater by ozone produced in dielectric barrier discharge. Journal of Chemistry, article ID 648162. https://doi.org/10.1155/2015/648162.

  • BRASIL. Resolução CONAMA 357, de 17 de março de 2005. Conselho Nacional de Meio Ambiente. Available at: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed Dec. 2019.

  • BRASIL. Resolução CONAMA 430, de 13 de maio de 2011. Conselho Nacional de Meio Ambiente. Available at: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Accessed Dec. 2019.

  • Cabrera-Díaz, A., Pereda-Reyes, I., Dueñas-Moreno, J., Véliz-Lorenzo, E., Díaz-Marrero, M. A., Menéndez-Gutiérrez, C. L., & Zaiat, M. (2016). Combined treatment of vinasse by an upflow anaerobic filter-reactor and ozonation process. Brazilian Journal of Chemical Engineering, 33(4), 753–762. https://doi.org/10.1590/0104-6632.20160334s20150268.

    Article  CAS  Google Scholar 

  • Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (2000). Standard methods for the examination of water and wastewater (p. 1220). American Water Works Association: Denver.

    Google Scholar 

  • de S. Coelho, C. C., Freitas-Silva, O., Campos, R. D. S., Bezerra, V. S., & Cabral, L. M. (2015). Ozonização como tecnologia pós-colheita na conservação de frutas e hortaliças: Uma revisão. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(4), 369–375. https://doi.org/10.1590/1807-1929/agriambi.v19n4p369-375.

    Article  Google Scholar 

  • Hansson, H., Kaczala, F., Amaro, A., Marques, M., & Hogland, W. (2015). Advanced oxidation treatment of recalcitrant wastewater from a wood-based industry: A comparative study of O3 and O3/UV. Water, Air, & Soil Pollution, 226, 1–12. https://doi.org/10.1007/s11270-015-2468-5.

    Article  CAS  Google Scholar 

  • Júnior, C. B. O., Sandri, D., Alencar, E. R. D., & Hebling, L. F. (2019). Ozonation improves physical attributes in domestic sewage effluent. Revista Ambiente & Água, 14(2). https://doi.org/10.4136/ambi-agua.2328.

  • Lage, F. F. A. (2008). Avaliação da filtração e ozonização de efluente sanitário primário: aspectos de inativação microbiana e variáveis de ozonização. Química Nova, 31(2), 312–316. https://doi.org/10.1590/S0100-40422008000200023.

    Article  Google Scholar 

  • Lee, B. H., Song, W. C., Manna, B., & Ha, J. K. (2008). Dissolved ozone flotation (DOF) – A promising technology in municipal wastewater treatment. Desalination, 225, 260–273. https://doi.org/10.1016/j.desal.2007.07.011.

    Article  CAS  Google Scholar 

  • Lei, L., & Li, Y. (2014). Effect of ozonation on recalcitrant chemical oxygen demand (COD), color and biodegradability of hardwood Kraft pulp (KP) bleaching effluent. BioResources, 9(1), 1236–1245.

    Article  Google Scholar 

  • Mahmoud, A., & Freire, R. S. (2007). Métodos emergentes para aumentar a eficiência do ozônio no tratamento de águas contaminadas. Química Nova, 30(1), 198–205. https://doi.org/10.1590/S0100-40422007000100032.

    Article  CAS  Google Scholar 

  • Marcelino, R. B., Leão, M. M., Lago, R. M., & Amorim, C. C. (2017). Multistage ozone and biological treatment system for real wastewater containing antibiotics. Journal of Environmental Management, 195, 110–116. https://doi.org/10.1016/j.jenvman.2016.04.041.

    Article  CAS  Google Scholar 

  • Mendonça, H. V., Ometto, J. P. H. B., & Otenio, M. H. (2017). Production of energy and biofertilizer from cattle wastewater in farms with intensive cattle breeding. Water, Air, & Soil Pollution, 228(2), 1–14. https://doi.org/10.1007/s11270-017-3264-1.

    Article  CAS  Google Scholar 

  • Mendonça, H. V., Ometto, J. P. H. B., Rocha, W. S. D., Martins, C. E., Otenio, M. H., & Borges, C. A. V. (2016). Crescimento de cana-de-açúcar sob aplicação de biofertilizante da bovinocultura e ureia. Revista Agronegócio e Meio Ambiente, 9(4), 973–987. https://doi.org/10.17765/2176-9168.2016v9n4p973-987.

    Article  Google Scholar 

  • Mendonça, H. V., Ometto, J. P. H. B., Otenio, M. H., Marques, I. P., & Reis, A. D. (2018). Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Sci Total Environ, 633, 1–11. https://doi.org/10.1016/J.SCITOTENV.2018.03.157.

    Article  Google Scholar 

  • Nakayama, F. S. (1982). Water analysis and treatment techniques to control emitter plugging. Portland, Oregon: Proc. Irrigation Association Conference.

    Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.

    Article  CAS  Google Scholar 

  • Paździor, K., Wrębiak, J., Klepacz-Smółka, A., Gmurek, M., Bilińska, L., Kos, L., Sójka-Ledakowicz, J., & Ledakowicz, S. (2017). Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. Journal of Environmental Management, 195, 166–173. https://doi.org/10.1016/j.jenvman.2016.06.055.

    Article  CAS  Google Scholar 

  • Peña, M., Coca, M., González, G., Rioja, R. and García, M. T. (2003). Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51, 893-900. 10.1016/S0045-6535(03)00159-0.

  • Schroeder, J. P., Croot, P. L., Von Dewitz, B., Waller, U., & Hanel, R. (2011). Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquacultural Engineering, 45, 35–41 https://doi.org/10.1016/j.aquaeng.2011.06.001.

    Article  Google Scholar 

  • Silva, A. C., Dezotti, M., & Sant’Anna Jr., G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55(2), 207–214 https://doi.org/10.1016/j.chemosphere.2003.10.013.

    Article  CAS  Google Scholar 

  • Silva, J. B. G., Martinez, M. A., Pires, C. P., Andrade, I. P. S., & Silva, G. T. (2012). Avaliação da condutividade elétrica e pH da solução do solo em uma área fertirrigada com água residuária de bovinocultura de leite. Revista Irriga - Botucatu, special edition, 250–263. https://doi.org/10.15809/irriga.2012v1n01p250

  • Singer, P. C., & Zilli, W. B. (1975). Ozonation of Ammonia in wastewater. Water Research, 9, 127–134. https://doi.org/10.1016/0043-1354(75)90001-9.

    Article  CAS  Google Scholar 

  • Subha, B, & Muthukumar, M. (2012). Optimization of ozonation process for the reduction of excess sludge production from activated sludge process of sago industry wastewater using central composite design. The Scientific World Journal, Article ID 460 239271. https://doi.org/10.1100/2012/239271.

  • Vale P., Gibbs H., Vale R., Christie M., Florence E., Munger J., Sabaini, D. (2019). The expansion of intensive beef farming to the Brazilian Amazon. Global Environmental Change Human and Policy Dimensions, 57, article ID: UNSP 101922. https://doi.org/10.1016/j.gloenvcha.2019.05.006.

  • Wilinski, P. & Jeremi, N. (2012). Dissolved ozone flotation as innovative and prospect method for treatment of micro pollutants and wastewater treatment costs reduction. 12th edition of the worldwide workshop for young environmental scientists (WWW-YES-2012) - urban waters: Resource or risks? France. Available in: https://hal.inria.fr/hal-00709736

  • World Health Organization (WHO). (2006). Guidelines for the safe use of wastewater, excreta and greywater: Wastewater use in agriculture (Volume II). Available in: http://www.who.int/water_ sanitation_health/wastewater/gsuweg2/en/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Vieira de Mendonça.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, D.S., Maciel, A.M., Otenio, M.H. et al. Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms. Water Air Soil Pollut 231, 362 (2020). https://doi.org/10.1007/s11270-020-04736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04736-2

Keywords

Navigation