Skip to main content
Log in

Electrostatic Self-assembly Aided Synthesis of CdS/Cs3PW12O40 Hybrids for Photocatalytic Reduction of Cr(VI)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalytic reduction is a promising approach to detoxifying carcinogenic Cr(VI) in water. Herein, CdS-sensitized Cs3PW12O40 composites were fabricated by electrostatic self-assembly followed by hydrothermal post-treatment strategy. The composite with 28.6 wt% CdS loading (CdS/CsPW) was characterized by XRD, FT-IR, SEM/TEM, EDX, UV-vis DRS, XPS, potentiometric titration, and N2 adsorption. The catalytic activity was evaluated by reducing Cr(VI) in the presence of EDTA under UV and visible light irradiation. The results revealed that CdS/CsPW had good photocatalytic reduction performance for Cr(VI) degradation under both UV and visible light illumination. After four-time repetitive use, ~ 93% of catalytic activity still remained. The photocatalytic reduction of Cr(VI) under visible light irradiation followed pseudo-first-order kinetics; the decreasing solution pH and initial Cr(VI) concentration, and increasing catalyst dosage and EDTA concentration were beneficial to Cr(VI) photoreduction. XPS analyses further indicated that the Cr(VI) adsorbed on surface of the catalyst was also reduced to Cr(III), and CdS and Cs3PW12O40 existed strong interaction. Meanwhile, the photoelectrons in CdS could migrate to Cs3PW12O40. Further, PL results verified CdS/CsPW heterostructure effectively suppressed the photogenerated electron-hole recombination. Based on experimental results, the mechanisms for Cr(VI) photoreduction by the prepared catalyst were proposed. This work may provide an attractive avenue to construct the efficient photocatalyst using polyoxometalates for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdullah, H., Kuo, D., & Chen, Y. (2016). High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. Journal of Materials Science, 51, 8209–8223.

    CAS  Google Scholar 

  • Ahmad, A., Ghazi, Z. A., Saeed, M., Ilyas, M., Ahmad, R., Muqsit, K. A., & Iqbal, A. (2017). A comparative study of the removal of Cr(VI) from synthetic solution using natural biosorbents. New Journal of Chemistry, 41, 10799–10807.

    CAS  Google Scholar 

  • Chakrabarti, S., Chaudhuri, B., Bhattacharjee, S., Ray, A. K., & Dutta, B. K. (2009). Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chemical Engineering Journal, 153, 86–93.

    CAS  Google Scholar 

  • Chava, R. K., Do, J. Y., & Kang, M. (2018). Smart hybridization of Au coupled CdS nanorods with few layered MoS2 nanosheets for high performance photocatalytic hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6, 6445–6457.

    CAS  Google Scholar 

  • Chen, S., & Kimura, K. (1999). A new strategy for the synthesis of semiconductor-metal hybrid nanocomposites: electrostatic self-assembly of nanoparticles. Chemistry Letters, 233–234.

  • Chen, D. W., & Ray, A. K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56, 1561–1570.

    CAS  Google Scholar 

  • Chen, C., Wang, Q., Lei, P., Song, W., Ma, W., & Zhao, J. (2006). Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation. Environmental Science & Technology, 40, 3965–3970.

    CAS  Google Scholar 

  • Chenthamarakshan, C. R., & Rajeshwar, K. (2000). Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: an interfacial induced adsorption–reduction pathway mediated by formate ions. Electrochemistry Communications, 2, 527–530.

    CAS  Google Scholar 

  • Dolbecq, A., Mialane, P., Keita, B., & Nadjo, L. (2012). Polyoxometalate-based materials for efficient solar and visible light harvesting: application to the photocatalytic degradation of azo dyes. Journal of Materials Chemistry, 22, 24509–24521.

    CAS  Google Scholar 

  • Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science & Technology, 22, 972–977.

    CAS  Google Scholar 

  • Feng, W., Zhang, L., Fang, J., Lu, S., Wu, S., Chen, Y., et al. (2017). Improved photodegradation efficiency of 2,4-DCP through a combined Q3Fe(III)-decorated porous g-C3N4/H2O2 system. Water, Air, & Soil Pollution, 228(9), 373.

    Google Scholar 

  • Friesen, D. A., Headley, J. V., & Langford, C. H. (1999). The photooxidative degradation of N-methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts. Environmental Science & Technology, 33, 3193–3198.

    CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Tiemann, K. J., Armendariz, V., Bess-Oberto, L., Chianelli, R. R., Rios, J., Parsons, J. G., & Gamez, G. (2000). Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of avena monida (Oat) biomass. Journal of Hazardous Materials, 80, 175–188.

    CAS  Google Scholar 

  • Gkika, E., Troupis, A., Hiskia, A., & Papaconstantinou, E. (2006). Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Applied Catalysis B: Environmental, 62, 28–34.

    CAS  Google Scholar 

  • Gupta, S., & Babu, B. V. (2009). Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chemical Engineering Journal, 150, 352–365.

    CAS  Google Scholar 

  • Haber, J., Matachowski, L., Mucha, D., Stoch, J., & Sarv, P. (2005). New evidence on the structure of potassium salts of 12-tungstophosphoric acid, KxH3-xPW12O40. Inorganic Chemistry, 44, 6695–6703.

    CAS  Google Scholar 

  • Han, S. H., Liu, H. M., Sun, C. C., Jin, P. J., & Chen, Y. (2018). Photocatalytic performance of AgCl@Ag core–shell nanocubes for the hexavalent chromium reduction. Journal of Materials Science, 53, 12030–12039.

    CAS  Google Scholar 

  • Henningsson, A., Rensmo, H., Sandell, A., Södergren, S., & Siegbahn, H. (2004). Insertion of H+, Li+, Na+ and K+ into thin films prepared from silicotungstic acid–a photoelectron spectroscopy study. Thin Solid Films, 461, 237–242.

    CAS  Google Scholar 

  • Hu, X., Ji, H., Chang, F., & Luo, Y. (2014). Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catalysis Today, 224, 34–40.

    CAS  Google Scholar 

  • Hug, S. J., Laubscher, H., & James, B. R. (1997). Iron(III) catalyzed photochemical reduction of chromium (VI) by oxalate and citrate in aqueous solutions. Environmental Science & Technology, 31, 160–170.

    CAS  Google Scholar 

  • Jo, W., & Selvam, N. C. S. (2017). Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chemical Engineering Journal, 317, 913–924.

    CAS  Google Scholar 

  • Kantar, C., Ari, C., & Keskin, S. (2015). Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure. Water Research, 76, 66–75.

    CAS  Google Scholar 

  • Ke, T. L., Guo, H. G., Zhang, Y. L., & Liu, Y. (2017). Photoreduction of Cr(VI) in water using BiVO4-Fe3O4 nano-photocatalyst under visible light irradiation. Environmental Science and Pollution Research, 24, 28239–28247.

    CAS  Google Scholar 

  • Kim, S., Yeo, J., & Choi, W. (2008). Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Applied Catalysis B: Environmental, 84, 148–155.

    CAS  Google Scholar 

  • Ku, Y., & Jung, I. (2001). Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, 135–142.

    CAS  Google Scholar 

  • Lee, S. M., Cho, I. H., Chang, Y. Y., & Yang, J. K. (2007). Effects of the density of carboxyl groups in organic compounds on the photocatalytic reduction of Cr(VI) in a TiO2 suspension. Journal of Environmental Science and Health Part A, 42, 543–548.

    CAS  Google Scholar 

  • Li, G., Zhang, K., Shen, H. D., Wang, C., Zhao, Q., Wang, D., Fu, F., & Liang, Y. (2019). Magnetically recyclable Fe3O4@SiO2/Bi2WO6−xF2x photocatalyst with well-designed core-shell nanostructure for the reduction of Cr(VI). Chemical Engineering Journal, 370, 1522–1533.

    Google Scholar 

  • Li, G., Zhang, K., Shen, H., Wang, C., Zhao, Q., Wang, D., Fu, F., & Liang, Y. (2020). 2D/2D type-II Cu2ZnSnS4/Bi2WO6 heterojunctions to promote visible-light-driven photo-fenton catalytic activity. Chinese Journal of Catalysis, 41, 503–513.

    CAS  Google Scholar 

  • Lin, S. H., & Kiang, C. D. (2003). Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chemical Engineering Journal, 92, 193–199.

    CAS  Google Scholar 

  • Liu, X., Pan, L., Lv, T., Zhu, G., Sun, Z., & Sun, C. (2011). Microwave-assisted synthesis of CdS–reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chemical Communications, 47, 11984–11986.

    CAS  Google Scholar 

  • Liu, F., Chen, X. J., Xia, Q., Tian, L., & Chen, X. B. (2015). Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Advances, 5, 77423–77428.

    CAS  Google Scholar 

  • Lv, J., Li, D., Dai, K., Liang, C., Jiang, D., & Lu, L. (2017). Multi-walled carbon nanotube supported CdS-EDTA nanocomposite for efficient visible light photocatalysis. Materials Chemistry and Physics, 186, 372–381.

    CAS  Google Scholar 

  • Madden, T. H., Datye, A. K., Fulton, M., Prairie, M. R., Majumdar, A., & Stange, B. M. (1997). Oxidation of metal-EDTA complexes by TiO2 photocatalysis. Environmental Science & Technology, 31, 3475–3481.

    CAS  Google Scholar 

  • Marinho, B. A., Cristóvão, R. O., Djellabi, R., Loureiro, J. M., Boaventura, R. A. R., & Vilar, V. J. P. (2017). Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B: Environmental, 203, 18–30.

    CAS  Google Scholar 

  • Matachowski, L., Drelinkiewicz, A., Lalik, E., Mucha, D., Gil, B., Brozek-Mucha, Z., & Olejniczak, Z. (2011). The influence of reagent used for the precipitation of Cs2HPW12O40 salt on its textural and catalytic properties. Microporous and Mesoporous Materials, 144, 46–56.

    CAS  Google Scholar 

  • Meichtry, J. M., Christophe, C. J., Custo, G., & Litter, M. I. (2014). TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: comparison of different commercial photocatalysts and studies by time resolved microwave conductivity. Applied Catalysis B: Environmental, 144, 189–195.

    CAS  Google Scholar 

  • Nasrallah, N., Kebir, M., & Koudri, Z. (2011). Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS. Journal of Hazardous Materials, 185, 1398–1404.

    CAS  Google Scholar 

  • Newman, A. D., Brown, D. R., Siril, P., Lee, A. F., & Wilson, K. (2006). Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts. Physical Chemistry Chemical Physics, 8, 2893–2902.

    CAS  Google Scholar 

  • Okuhara, T., Watanabe, H., Nishimura, T., Inumaru, K., & Misono, M. (2000). Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis. Chemistry Materials, 12, 2230–2238.

    CAS  Google Scholar 

  • Pérez-Maqueda, L. A., & Matijević, E. (1998). Preparation of uniform colloidal particles of salts of tungstophosphoric acid. Chemistry Materials, 10, 1430–1435.

    Google Scholar 

  • Sasca, V., Doca, N., Popa, A., & Jaeger, N. (2012). Kinetics of the reduction with CO and reoxidation on the 12-molybdophosphoric, 1-vanado-11-molybdophosphoric acids and their salts with NH4+, K+ and Cs+ studied by “in situ” UV-vis-DRS spectroscopy. Reaction Kinetics, Mechanisms and Catalysis, 105, 207–221.

  • Schwarz, J. A., Driscoll, C. T., & Bhanot, A. K. (1984). The zero point of charge of silica-alumina oxide suspensions. Journal of Colloid and Interface Science, 97, 55–61.

    CAS  Google Scholar 

  • Shi, H., Zhao, T., Zhang, Y., Tan, H., Shen, W., Wang, W., Li, Y., & Wang, E. (2019). Pt/POMs/TiO2 composite nanofibers with an enhanced visible-light photocatalytic performance for environmental remediation. Dalton Transactions, 48, 13353–13359.

    CAS  Google Scholar 

  • Siemon, U., Bahnemann, D., Testa, J. J., Rodríguez, D., Litter, M. I., & Bruno, N. (2002). Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 148, 247–255.

    CAS  Google Scholar 

  • Sivakumar, R., Thomas, J., & Yoon, M. (2012). Polyoxometalate-based molecular/nano composites: advances in environmental remediation by photocatalysis and biomimetic approaches to solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 277–298.

    CAS  Google Scholar 

  • Testa, J. J., Grela, M. A., & Litter, M. I. (2001). Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium(VI) over TiO2. Langmuir, 17, 3515–3517.

  • Testa, J. J., Grela, M. A., & Litter, M. I. (2004). Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate : involvement of Cr(V) species. Environmental Science & Technology, 38, 1589–1594.

    CAS  Google Scholar 

  • Troupis, A., Hiskia, A., & Papaconstantinou, E. (2004). Selective photocatalytic reduction-recovery of palladium using polyoxometallates. Applied Catalysis B: Environmental, 52, 41–48.

    CAS  Google Scholar 

  • Venkateswaran, P., & Palanivelu, K. (2004). Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution. Separation and Purification Technology, 40, 279–284.

    CAS  Google Scholar 

  • Wang, X. L., Pehkonen, S., & Ray, A. (2004). Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Industrial & Engineering Chemistry Research, 43, 1665–1672.

    CAS  Google Scholar 

  • Wang, X., Liu, G., Chen, Z. G., Li, F., Wang, L., Lu, G. Q., & Cheng, H. M. (2009). Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 23, 3452–3454.

    Google Scholar 

  • Wang, H., Yuan, X., Wu, Y., Zeng, G., Chen, X., Leng, L., Wu, Z., Jiang, L., & Li, H. (2015). Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. Journal of Hazardous Materials, 286, 187–194.

    CAS  Google Scholar 

  • Wang, C. C., Du, X. D., Li, J., Guo, X. X., Wang, P., & Zhang, J. (2016a). Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 193, 198–216.

    CAS  Google Scholar 

  • Wang, Q., Shi, X. D., Xu, J. J., Crittenden, J. C., Liu, E. Q., Zhang, Y., & Cong, Y. Q. (2016b). Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: influence of calcination temperature. Journal of Hazardous Materials, 307, 213–220.

  • Wang, Q., Shi, X. D., Xu, J. J., Crittenden, J. C., Liu, E. Q., Ma, X. J., Zhang, Y., & Cong, Y. Q. (2016c). Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction. Journal of Hazardous Materials, 317, 8–16.

  • Wittbrodt, P. R., & Palmer, C. D. (1995). Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environmental Science & Technology, 29, 255–263.

    CAS  Google Scholar 

  • Xu, F., Ma, T., Shi, L., & Zhang, J. (2014). Bioreduction of Cr(VI) by bacillus sp. QH-1 isolated from soil under chromium-containing slag heap in high altitude area. Annals of Microbiology, 64, 1073–1080.

    CAS  Google Scholar 

  • Xue, C., Zhang, T., Ding, S., Wei, J., & Yang, G. (2017). Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity. ACS Applied Materials & Interfaces, 9, 16091–16102.

    CAS  Google Scholar 

  • Yao, Z., Du, S., Zhang, Y., Zhu, B., Zhu, L., & John, A. E. (2015). Positively charged membrane for removing low concentration Cr(VI) in ultrafiltration process. Journal of Water Process Engineering, 8, 99–107.

    Google Scholar 

  • Yu, J., Wang, T., & Rtimi, S. (2019). Magnetically separable TiO2/FeOx/POM accelerating the photocatalytic removal of the emerging endocrine disruptor: 2,4-dichlorophenol. Applied Catalysis B: Environmental, 254, 66–75.

    CAS  Google Scholar 

  • Zhang, Y., & Park, S. J. (2019). Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr(VI). Applied Catalysis B: Environmental, 240, 92–101.

    CAS  Google Scholar 

  • Zhang, Y., & Yang, J. (2019). UV-light catalyzed reduction of Cr(VI) by graphene oxide and its significance for Cr(VI) transformation in an oxisol. Water, Air, & Soil Pollution, 230(5), 103.

    Google Scholar 

  • Zhang, L., Wong, K., Chen, Z., Yu, J. C., Zhao, J., Hu, C., Chan, C., & Wong, P. (2009). AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components. Applied Catalysis A-General, 363, 221–229.

    CAS  Google Scholar 

  • Zhang, Y. C., Li, J., Zhang, M., & Dionysiou, D. D. (2011). Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environmental Science & Technology, 45, 9324–9331.

    CAS  Google Scholar 

  • Zhang, Y. C., Li, J., & Xu, H. Y. (2012). One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Applied Catalysis B: Environmental, 123–124, 18–26.

    Google Scholar 

  • Zhao, L., Zhao, Y., Yang, B., & Teng, H. (2019). Application of carboxymethyl cellulose–stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater. Water, Air, & Soil Pollution, 230(6), 113.

    Google Scholar 

  • Zhou, Y., Chen, G., Long, Z., & Wang, J. (2014). Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Advances, 4, 42092–42113.

    CAS  Google Scholar 

  • Zhou, M., Wang, S., Yang, P., Huang, C., & Wang, X. (2018). Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catalysis, 8, 4928–4936.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM2035), Open Funding Project of State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology (No. 2016KFKT-3), and National Science Foundation of China (Grants 51979223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kebin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Lu, Z., Wei, H. et al. Electrostatic Self-assembly Aided Synthesis of CdS/Cs3PW12O40 Hybrids for Photocatalytic Reduction of Cr(VI). Water Air Soil Pollut 231, 345 (2020). https://doi.org/10.1007/s11270-020-04727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04727-3

Keywords

Navigation