Skip to main content
Log in

Soil-Air Partition Coefficients of Persistent Organic Pollutants Decline from Climate Warming: a Case Study in Yantai County, Shandong Province, China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Recognizing the kinetics of the soil-air partition coefficients (Ksoil-air) of persistent organic pollutants (POPs) under distinct scenarios of changing climate conditions is crucial for well understanding the response of POPs exchange process across the air-soil interface to climate warming. Taking Yantai County, Shandong Province, China, as a case study, the Ksoil-air values of HCH, DDE, DDD, and DDT in cropland soil under two levels of soil organic matter (SOM) (0.5% and 1.7%) were projected under future climate scenarios by employing representative concentration pathway (RCP) climate scenarios and a multiple linear model of the Ksoil-air of POPs. Compared to baseline conditions, future climate conditions would shift substantially, and daily Ksoil-air values of HCH, DDE, DDD, and DDT under future climate scenarios would decline by approximately 23–91 (× 105), 5,542–21,703 (× 105), 78–309 (× 105), and 18,986–74,133 (× 105), respectively, under future climate scenarios than under baseline conditions when the SOM content was 0.5% or by approximately 9,167–360,45 (× 105), 128,533–508,592 (× 105), 31,513–123,038 (× 105), and 444,513–1738,367 (× 105), respectively, when the SOM level was 1.7%, or by approximately 2–13% under two levels of SOM. Annual Ksoil-air values of HCH, DDE, DDD, and DDT would decline by approximately 3.51–7.54 (× 105), 842.06–1,806.46 (× 105), 11.83–25.66 (× 105), and 2,840.13–6,153.16 (× 105), respectively, when the SOM content was 0.5%, or by approximately 1,397.47–2,997.98 (× 105), 19,739.82–42,347.56 (× 105), 4,713.44–10,211.70 (× 105), and 66,579.06–144,244.10 (× 105), respectively, when the SOM content was 1.7%, or by approximately 8–18% under two levels of SOM. Moreover, Ksoil-air showed daily, monthly, and seasonal temporal changes within whole years and high temporal yearly fluctuation. Daily and annual Ksoil-air values were lower under 0.5% SOM content than under 1.7% SOM content. The results suggested that the adsorbing capacity of soil to POPs would decrease, and many more POPs in the soil would volatilize to the atmosphere from climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data and materials support my published claims and comply with field standards.

Code Availability

All calculations were performed by a visional Fortran program (Compaq visional Fortran professional edition 6.5, Compaq computer corporation, 2000) from 1951 to 2050 under different climate change scenarios. The calculation programs have been written by the author.

References

  • Arp, H. P. H., Goss, K. U., & Schwarzenbach, R. P. (2006). Evaluation of a predictive model for air/surface adsorption equilibrium constants and enthalpies. Environmental Toxicology and Chemistry, 25(1), 45–51.

    CAS  Google Scholar 

  • Backe, C., Cousins, I. T., & Larsson, P. (2004). PCB is soils and estimated soil-air exchenge fluxes of selected PCB congeners in the south of swenen. Environmental Pollution, 128, 59–72.

    CAS  Google Scholar 

  • Bao, Z., Haberer, C., Maier, U.,Beckingham, B., Amos, R.T., & Grathwohl, P.(2015).Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil–atmosphere interface Science of the Total Environment,538, 789–801.

  • Bidleman, T. F., Jantunen, L. M., Karakus-Kurt, P. B., & Wong, F. (2012). Chiral persistent organic pollutants as tracers of atmospheric sources and fate:Review and prospects for investigating climate change influences. Atmospheric Pollution Research, 3, 371–382.

    CAS  Google Scholar 

  • Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2009). Processes affecting the movement of organochlorine pesticides (OCPs) between soil and air in an industrial site in Turkey. Chemosphere, 77(9), 1168–1176.

    CAS  Google Scholar 

  • Bronner, G., & Goss, K. U. (2011). Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon. Environmental Science & Technology, 45(4), 1313–1319.

    CAS  Google Scholar 

  • Bustnes, J. O., Moe, B., Hanssen, S. A., Herzke, D., Fenstad, A. A., Nordstad, T., Borgå, K., & Gabrielsen, G. W. (2012). Temporal dynamics of circulating persistent organic pollutants in a fasting seabird under different environmental conditions. Environmental Science & Technology, 46(18), 10287–10294.

    CAS  Google Scholar 

  • Cabrerizo, A., Dachs, J., & Barceló, D. (2009). Development of a soil fugacity sampler for determination of air-soil partitioning of persistent organic pollutants under field controlled conditions. Environmental Science & Technology, 43, 8257–8263.

    CAS  Google Scholar 

  • Cabrerizo, A., Dachs, J., Barceló, D., & Jones, K. C. (2011a). Factors influencing the soil−air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environmental Science & Technology, 45(11), 4785–4792.

    CAS  Google Scholar 

  • Cabrerizo, A., Dachs, J., Jones, K. C., & Barcel, D. (2011b). Soil-air exchange controls on background concentrations of organochlorine pesticides. Atmospheric Chemistry and Physics, 11, 12799–12811.

    CAS  Google Scholar 

  • Cabrerizo, A., Dachs, J., Barceló, D., & Jones, K. C. (2013). Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environmental Science & Technology, 47, 4299–4306.

    CAS  Google Scholar 

  • Cai, J. J., Song, J. H., Lee, Y., & Lee, D. S. (2014). Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction. Science of the Total Environment, 470–471, 1526–1536.

    Google Scholar 

  • Card, M. L., Chin, Y. P., Lee, L. S., & Khan, B. (2012). Prediction and experimental evaluation of soil sorption by natural hormones and hormone mimics. Journal of Agricultural and Food Chemistry, 60(6), 1480–1487.

    CAS  Google Scholar 

  • Casal, P., Castro-Jiménez, J., Pizarro, M., Katsoyiannis, A., & Dachs, J. (2018). Seasonal soil/snow-air exchange of semivolatile organic pollutants at a coastal arctic site (Tromsø, 69°N). Science of the Total Environment, 636, 1109–1116.

    CAS  Google Scholar 

  • Chiou, C. T., & Shoup, T. D. (1985). Soil sorption of organic vapors and effects of humidity on sorption mechanism and capacity. Environmental Science & Technology, 19, 1196–1200.

    CAS  Google Scholar 

  • Cousins, I. T., Beck, A. J., & Jones, K. C. A. (1999). Review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface. Science of the Total Environment, 228, 5–24.

    CAS  Google Scholar 

  • Cui, S., Fu, Q., Li, Y.-F., Ma, J., Tian, C., Liu, L., & Zhang, L. (2017). Modeling the air-soil exchange,secondary emissions and residues in soil of polychlorinated biphenyls in China. Science Reports, 7(221), 1–10.

    Google Scholar 

  • Dai, J. R., Zhang, J., Yu, C., Dong, Z. C., & Pang, X. G. (2012). Study on the residues and sources of organochlorine pesticides in soil of Yantai City, Shandong Province. Earth Environment, 40(1), 50–56.

    CAS  Google Scholar 

  • Dalla Valle, M., Dachs, J., Sweetman, A. J., & Jones, K. C. (2004). Maximum reservoir capacity of vegetation for persistent organic pollutants: implications for global cycling. Global Biogeochemical Cycles, 18, GB4032.

    Google Scholar 

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173.

    CAS  Google Scholar 

  • Davidson, D. A., Wilkinson, A. C., Kimpe, L. E., & Blais, J. M. (2004). Persistent organic pollutants in air and vegetation from the Canadian rocky mountains. Environmental Toxicology and Chemistry, 23, 540–549.

    CAS  Google Scholar 

  • Davie-Martin, C. L., Hageman, K. J., & Chin, Y. P. (2013). An improved screening tool for predicting volatilization of pesticides applied to soil. Environmental Science & Technology, 47, 868–876.

    CAS  Google Scholar 

  • Davie-Martin, C. L., Hageman, K. J., Chin, Y. P., Rouge, V., & Fujita, Y. (2015). Influence of temperature, relative humidity, and soil properties on measurements and predicativeive models. Environmental Science & Technology, 49, 10431–10439.

    CAS  Google Scholar 

  • Chen, X. C., Xu, Y., Xu, C. H., & Yao, Y. (2014). Assessment of precipitation simulations in China by CMIP5 multi-models. Climate Change Research, 10(3), 217–225.

  • Schüürmann,G., Ebert, R-U.,& Kühne, R.(2006).Prediction of the sorption of organic compounds into soil organic matter from molecular structure Environmental Science & Technology, 40(22),7005–7011.

  • Finizio, A., Mackay, D., Bidleman, T., & Harner, T. (1997). Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment, 31, 2289–2296.

    CAS  Google Scholar 

  • Garcia-Borràs, M., Osuna, S., Luis, J. M., Swart, M., & Solà, M. (2014). The role of ar-omaticity in determining the molecular structure and reactivity of (En dohedralmetallo) Fullerenes. Chemical Society Reviews, 43, 5089–5105.

  • Geng, C. Z., Li, M. L., Yang, Y. L., Zhang, L. F., & Nie, L. M. (2006). Study on the status of OCPs and PCBs pollution in soils in Qingdao Region. Journal of Qingdao University, 21(2), 42–48.

    CAS  Google Scholar 

  • Gong, Z. M., Cao, J., Zhu, X. M., Cui, Y. H., Guo, L. Q., Tan, S., Sheng, W. R., Zhao, X. M., & Hang, L. X. (2002). Organochlorine pesticide residues in farmland soils in polluted irrigation areas in the suburbs of Tianjin. Agriculture Environmental .Protection, 21(5), 459–461.

    Google Scholar 

  • Gong, Z. M., Cao, J., Li, B. G., Xu, F. L., Tao, F., Shen, W. R., Zhang, W. J., Hang, B. P., & Sun, R. (2003, 23). Residues and partition characteristics of HCH in soils in Tianjin. Chinese Environmental Science, (3), 311–314.

  • Goss, K. U., & Schwarzenbach, R. P. L. (2001). Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science & Technology, 35, 1–9.

    CAS  Google Scholar 

  • Goss, K. U., & Schwarzenbach, R. P. (2002). Adsorption of a diverse set of organic vapors on quartz, CaCO3, and α-Al2O3 at different relative humidities. Journal of Colloid and Interface Science, 252(1), 31–41.

    CAS  Google Scholar 

  • Goss, K. U., Buschmann, J., & Schwarzenbach, R. P. (2003). Determination of the surface sorption properties of talc, different salts, and clay minerals at various relative humilities using adsorption data of a diverse set of organic vapors. Environmental Toxicology and Chemistry, 22(11), 2667–2672.

    CAS  Google Scholar 

  • Gouin, T., Armitage, J. M., Cousins, I. T., Muir, D. C., Ng, C. A., Reid, L., & Tao, S. (2013). Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models. Environmental Toxicology and Chemistry, 32, 20–31.

    CAS  Google Scholar 

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8, 345–360.

    Google Scholar 

  • Halsall, C. (2004). Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack. Environmental Pollution, 128(1), 163–175.

    CAS  Google Scholar 

  • Hansen, K. M., Christensen, J. H., Geels, C., Silver, J. D., & Brandt, J. (2015). Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic. Atmospheric Chemistry and Physics, 15(5), 6509–6535.

    Google Scholar 

  • Harner, T., Bidleman, T. F., Jantunen, L. M., & Mackay, D. (2001). Soil-air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry, 20(7), 1612–1621.

    CAS  Google Scholar 

  • He, X., Chen, S., Quan, X., Zhao, Y., & Zhao, H. (2009). Temperature-dependence of soil/air partition coefficients for selected polycyclic aromatic hydarocarbons and organochlorine pesticides over a temperature range of −30 to + 30°C. Chemosphere, 76, 465–471.

    CAS  Google Scholar 

  • Hippelein, M., & McLachlan, M. S. (1998). Soil/air partitioning of semivolatile organic compounds. 1. Method development and influence of physical−chemical properties. Environmental Science & Technology, 32(2), 310–316.

    CAS  Google Scholar 

  • Hippelein, M., & Mclachlan, M. S. (2000). Soil /air partitioning of semivolatile organic compounds.2 influence of temperature and relative humidity. Environmental Science & Technology, 34(16), 3521–3526.

    CAS  Google Scholar 

  • Huang, S. Q., Wang, Z. J., Kang, Y. H., & Ma, M. (2004). Vertical distribution characteristics of organochlorine pesticides in columnar samples of sediments in Guanting Reservoir. Environmental Science Research, 17(6), 19–21.

    Google Scholar 

  • Huang, T., Zhang, X., Ling, Z., Zhang, L., Gao, H., Tian, C., Guo, J., Zhao, Y., Wang, L., & Ma, J. (2016). Impacts of large-scale land-use change on the uptake of polycyclic aromatic hydrocarbons in the artificial three northern regions shelter forest across northern China. Environmental Science & Technology, 50(23), 12885.

    CAS  Google Scholar 

  • Huang, Y., Sun, X., Liu, M., Zhu, J., Yang, J., Du, W., Zhang, X., Gao, D. Z., Qadeer, A., Xie, Y. S., & Nie, N. (2019). A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China. Chemosphere, 217, 298–307.

    CAS  Google Scholar 

  • IPCC (2013).Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [edsStocker,T.F.,Qin,D.,Plattner,G-K,Tignor,M,Allen,S.K.,Boschung,J,Nauels,A.,Xia,Y.,Bex,V,Midgley P.M.]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jiang, S., Jiang, Z. H., Li, W., & Shen, Y. C. (2017). Evaluation of the extreme temperature and its trend in China simulated by CMIP5 models. Climate Change Research, 13, 11–24.

    Google Scholar 

  • Kallenborn, R., Halsall, C., Dellong, M., & Carlsson, P. (2012). The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. Journal of Environmental Monitoring, 14, 2854–2869.

    CAS  Google Scholar 

  • Karickhoff, S. V. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10(8), 833–846.

    CAS  Google Scholar 

  • Komprda, J., Komprdová, K., Sáňka, M., Možný, M., & Nizzetto, L. (2013). Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils. Environmental Science & Technology, 47(13), 7052–7059.

    CAS  Google Scholar 

  • Kong, D., Macleod, M., Li, Z., & Cousins, I. T. (2013). Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere, 93(9), 2086–2093.

    CAS  Google Scholar 

  • Kong, D., MacLeod, M., & Cousins, I. T. (2014). Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model. Chemosphere, 110, 31–40.

    CAS  Google Scholar 

  • Lammel, G. (2004). Effects of time-averaging climate parameters on predicted multicompartmental fate of pesticides and POPs. Environmental Pollution, 128, 291–302.

    CAS  Google Scholar 

  • Lamon, L., Dalla Valle, M., Critto, A., & Marcomini, A. (2009). Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation. Environmental Pollution, 157, 1971–1980.

    CAS  Google Scholar 

  • Lamon, L., Macleod, M., Marcomini, A., & Hungerbuhler, K. (2012). Modeling the influence of climate change on the mass balance of polychlorinated biphenyls in the Adriatic Sea. Chemosphere, 87, 1045–1051.

    CAS  Google Scholar 

  • Li, J. J., Chen, J. X., Liu, C., & Yang, Z. F. (2008). Investigation and evaluation of DDT (DDT) residues in soils in Beijing suburbs. Geological Bulletin, 27(2), 252–256.

    CAS  Google Scholar 

  • Liu, X. M., Xu, X. R., Zhang, X. T., Zhang, G. G., Li, H., & Zhou, C. G. (2001). Organochlorine pesticides and polychlorinated biphenyls in the sediments of Dalian Bay. Marine Environmental Science, 20(4), 40–44.

    CAS  Google Scholar 

  • Loizeau, V., Ciffroy, P., Roustan, Y., & Musson-Genon, L. (2014). Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere. The Science of the Total Environment, 493, 419–431.

    CAS  Google Scholar 

  • Lohmann, R., Breivk, K., Dachs, J., & Muire, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150, 150–165.

  • Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., Reinhard, M., Traina, S. J., Weber Jr., W. J., & Westall, J. C. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 31(12), 3341–3347.

    CAS  Google Scholar 

  • Ma, J., Hung, H., & Macdonald, R. W. (2016). The influence of global climate change on the environmental fate of persistent organic pollutants: a review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Global and Planetary Change, 146, 89–108.

    Google Scholar 

  • Ma, J., Hung, H., Tian, C., & Kallenborn, R. (2011). Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nature Climate Change, 1, 255–260.

  • Mackay, D. (1991). Multimedia environmental models (p. 1991). Boca Raton: Lewis Publish-ers.

    Google Scholar 

  • Mackay, D.,Shu, W., Ma, K., & Lee,S.(2006).Physical-chemical properties and environmental fate handbook. CRC Press LLC.

  • MacLeod, M., Riley, W. J., & Mckone, T. E. (2005). Assessing the influence of climate variability on atmospheric concentrations of Polychlorinated Biphenyls using a global-scale mass balance model (BETR-Global). Environmental Science & Technology, 39, 6749–6756.

  • Marquès, M., Mari, M., Audí-Miró, C., Sierra, J., Soler, A., Nadal, M., & Domingo, J. L. (2016). Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere, 148, 495–503.

  • Meijer, S. N., Ockenden, W. A., Sweetman, A., Breivik, K., Grimalt, J. O., & Jones, K. C. (2003a). Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environmental Science & Technology, 37, 667–672.

    CAS  Google Scholar 

  • Meijer, S. N., Shoeib, M., Jones, K. C., & Harner, T. (2003b). Air-soil exchange of organochlorine pesticides in agricultural soils. 2. laboratory measurements of the soil-air partition coefficient. Environmental Science & Technology, 37, 1300–1305.

    CAS  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463,747–463,756.

  • Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwina, K. N., & Levin, E. D. (2009). The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35, 971–986.

  • Nadal, M., Marquès, M., Mari, M., & Domingo José, L. (2015). Climate change and environmental concentrations of POPs: a review. Environmental Research, 143(Part A), 177–185.

    CAS  Google Scholar 

  • Odabasi, M., & Cetin, B. (2012). Determination of octanol–air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: Application to air–soil exchange. Journal of Environmental Management, 113, 432–439.

    CAS  Google Scholar 

  • Odabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas–particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615–6625.

    CAS  Google Scholar 

  • Odziomek, K., Gajewicz, A., Haranczyk, M., & Puzyn, T. (2013). Reliability of environmental fate modeling results for POPs based on various methods of determining the air/water partition coefficient (log KAW). Atmospheric Environment, 73, 177–184.

    CAS  Google Scholar 

  • Octaviani, M., Stemmler, I., Lammel, G., & Graf, H. F. (2015). Atmospheric transport of persistent organic pollutants to and from the Arctic under Present-Day and Future Climate. Environmental Science & Technology, 49(6), 3593–3602.

  • Pan, S., Yi, S., Wang, Y., Sun, S., Jiang, H., & Zang, K. (2018). Climate change and its impacts on tourism in Yantai. Journal of Agriculture, 8(5), 60–66.

    Google Scholar 

  • Pang, X. G., Zhang, F., Wang, H. J., Hu, X. P., & Zeng, X. D. (2009). Organochlorine pesticide residues and their distribution characteristics in the soil of Southwestern Shandong Province. Geological Bulletin, 28(5), 667–670.

    CAS  Google Scholar 

  • Pang, X. G., Wang, H. J., Gao, Z. J., Dai, J. R., & Wang, C. Y. (2011). Distribution characteristics of organochlorine pesticides in soil of Yantai City, Shandong Province. Geophysical and Geochemical Exploration, 35(5), 671–674.

    Google Scholar 

  • Paul, A. G., Hammen, V. C., Hickler, T., Karlson, U. G., Jones, K. C., & Sweetman, A. J. (2012). Potential implications of future climate and land-cover changes for the fate and distribution of persistent organic pollutants in Europe. Global Ecology and Biogeography, 21, 64–74.

    Google Scholar 

  • Qi, S. H., You, Y. H., Su, Q. K., Gong, X. Y., Wu, C. X., Wang, W., & Lv, C. L. (2005). Organochlorine pesticides in ecological geochemical surveys. Geological Bulletin, 24(8), 704–709.

    CAS  Google Scholar 

  • Yang,D, Qi S-H, Zhang J-Q, Tan L-Z, Zhang J-P, Zhang Y, Xu F, Xing X-L, Hu Y, Chen W, Yang J-H, & Xu M-H.(2012). Residues of Organochlorine pesticides (OCPs) in agricultural soils of Zhangzhou City, China Pedosphere, 22( 2), 178–189.

  • Qu, C., Xing, X., Albanese, S., Doherty, A., Huang, H., Lima, A., Qi, S., & De Vivo, B. (2015). Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China: regional source vs. long-range transport and air–soil exchange. Atmospheric Environment, 122, 31–40.

    CAS  Google Scholar 

  • Reichman, R., Wallach, R., & Mahrer, Y. (2000a). A combined soil–atmosphere model for evaluating the fate of surface-applied pesticides.1. Model development and verification. Environmental Science & Technology, 34, 1313–1320.

    CAS  Google Scholar 

  • Reichman, R., Wallach, R., & Mahrer, Y. (2000b). A combined soil–atmosphere model for evaluating the fate of surface-applied pesticides. 2. The effect of varying environmental conditions. Environmental Science & Technology, 34, 1321–1330.

    CAS  Google Scholar 

  • Reichman, R., Yates, S. R., Skaggs, T. H., & Rolston, D. E. (2013a). Effects of soil moisture on the diurnal pattern of pesticide emission: numerical simulation and sensitivity analysis. Atmospheric Environment, 66, 41–51.

    CAS  Google Scholar 

  • Reichman, R., Yates, S. R., Skaggs, T. H., & Rolston, D. E. (2013b). Effects of soil moisture on the diurnal pattern of pesticide emission: Comparison of simulations with field measurements. Atmospheric Environment, 66, 52–62.

    CAS  Google Scholar 

  • Ren, J., Wang, X. P., Gong, P., Sheng, J. J., & Yao, T. D. (2013). Research progress on air-soil interface exchange of persistent organic pollutants. Progress in Geography, 32(3), 288–297.

    Google Scholar 

  • Ren, J., Wang, X., Gong, P., & Wang, C. (2019). Characterization of tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming. Environmental Science & Technology, 53(7), 3589–3598.

    CAS  Google Scholar 

  • Ripszam, M., Gallampois, C. M. J., Berglund, Å., Larsson, H., Andersson, A., Tysklind, M., & Haglund, P. (2015). Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms. Science of The Total Environment, 517, 10–21.

  • Roscales, J. L., Muñoz-Arnanz, J., Ros, M., Vicente, A., Barrios, L., & Jiménez, B. (2018). Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part I: Spatial and temporal observations of PBDEs. Science of the Total Environment, 634, 1657–1668.

    CAS  Google Scholar 

  • Ruggiero, P., Pizzigallo, M. D. R., & Crecchio, C. (2002). Effects of soil abiotic processes on the bioavailability of anthropogenic organic residues. Developments in Soil Science, 28, 95–133.

    Google Scholar 

  • Schneider, M., & Goss, K.-U. (2012). Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions. Environmental Science & Technology, 46, 12527–12533.

    CAS  Google Scholar 

  • Schneider, M., Endo, S., & Goss, K.-U. (2013). Volatilization of pesticides from the bare soil surface: evaluation of the humidity effect. Journal of Environmental Quality, 42, 844–851.

    CAS  Google Scholar 

  • Scholtz, M. T., & Bidleman, T. F. (2006). Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part 1. Model description and evaluation. Science of the Total Environment, 368, 823–838.

    CAS  Google Scholar 

  • Scholtz, M. T., & Bidleman, T. F. (2007). Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part 2. Projected long-term fate of pesticide residues. Science of the Total Environment, 377, 61–80.

    CAS  Google Scholar 

  • Schüürmann, G., Ebert, R.-U., & Kühne, R. (2006). Prediction of the sorption of organic compounds into soil organic matter from molecular structure. Environmental Science & Technology, 40(22), 7005–7011.

  • Shi, S. Y., Zhou, L., Shao, D. D., & Huang, Y. R. (2007). Study on residues of organochlorine pesticides in soils in Beijing. Environmental Science Research, 20(56), 24–29.

    Google Scholar 

  • Shi, B. J., Li, X. N., Shuai, Q., Pang, X. G., Dai, J. R., & Hu, S. H. (2012). Residue distribution and source analysis of DDTs and HCHs in apple orchard soil in Yantai, Shandong Province. Rock and Mineral Testing, 32(2), 318–324.

    Google Scholar 

  • Shoeib, M., & Harner, T. (2002). Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides. Environmental Toxicology and Chemistry, 21, 984–990.

    CAS  Google Scholar 

  • Song, J. H., Lee, Y., & Lee, D. S. (2016). Development of a multimedia model (POPsLTEA) to assess the influence of climate change on the fate and transport of polycyclic aromatic hydrocarbons in East Asia. Science of the Total Environment, 569–570, 690–699.

  • Stenzel, A., Goss, K. U., & Endo, S. (2014). Prediction of partition coefficients for complex environmental contaminants: Validation of COSMOtherm, ABSOLV, and SPARC. Environmental Toxicology and Chemistry, 33(7), 1537–1543.

    CAS  Google Scholar 

  • Su, C., Zhang, H., Cridge, C., & Liang, R. (2019). A review of multimedia transport and fate models for chemicals: principles, features and applicability. The Science of the Total Environment, 668, 881–892.

    CAS  Google Scholar 

  • Sweetman, A. J., Valle, M. D., Prevedouros, K., & Jones, K. C. (2005). The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. Chemosphere, 60(7), 959–972.

    CAS  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498.

    Google Scholar 

  • Teran, T., Lamon, L., & Marcomini, A. (2012). Climate change effects on POPs’ environmental behaviour: a scientific perspective for future regulatory actions. Atmospheric Pollution Research, 3(4), 466–476.

    CAS  Google Scholar 

  • Tülp, H. C., Goss, K. U., Schwarzenbach, R. P., & Fenner, K. (2008). Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals. Environmental Science & Technology, 42(6), 2034–2040.

    Google Scholar 

  • Valle, M. D., Codato, E., & Marcomini, A. (2007). Climate change influence on POPs distribution and fate: a case study. Chemosphere, 67(7), 1287–1295.

    Google Scholar 

  • Valsaraj, K. T., & Thibodeaux, L. J. (1988). Equilibrium adsorption of chemical vapors on surface soils, landfills and landfarms—a review. Journal of Hazardous Materials, 19(1), 79–99.

    CAS  Google Scholar 

  • Wania, F., Haugen, J. E., Lei, Y. D., & Mackay, D. (1998). Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environmental Science & Technology, 32(8), 1013–1021.

  • Wang, J. B. (1997). Influencing factors of organic pesticide volatilization from soil. Journal of Anqing Teachers College(Natural Science Edition), 3(3), 55–56.

    Google Scholar 

  • Wang, X. P., Gong, P., & Yao, T. D. (2008). Research progress on persistent organic pollutants in the atmosphere in remote areas. Environmental Sciences, 29(2), 273–282.

    Google Scholar 

  • Wang, W., Simonich, S., Giri, B., Chang, Y., Zhang, Y., Jia Y, Tao S, Wang, R., Wang, B., Li, W., Cao, J.,& Lu, X.(2011). Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China Science of the Total Environment, 409(15),2942-2950.

  • Wang, C. H., Wu, S. H., Zhou, S. L., & Yan, Y. N. (2014). Research progress on spatial distribution characteristics and environmental behavior of persistent organic pollutants in typical soils. Environmental Chemistry, 33(11), 1929–1839.

    Google Scholar 

  • Wang, W., Lou, X. Z., An, D. L., Li, J., Lai, X. G., Li, Y. M., & Yang, H. Y. (2015). Research on soil-air exchange of organochlorine pesticides in Anshan City. Environmental Protection Science, 41(2), 100–104.

    CAS  Google Scholar 

  • Wang, X. P., Sun, D. C., & Yao, T. D. (2016). Climate change and global cycling of persistent organic pollutants: a critical review. Science China Earth Sciences, 59(10), 1899–1911.

    Google Scholar 

  • Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2013). The inter-sectoral impact model intercomparison project ,ISI–MIP: project framework. PNAS, 111, 3228–3232.

    Google Scholar 

  • Wong, F., Kurt-Karakus, P., & Bidleman, T. F. (2012). Fate of brominated flame retardants and organochlorine pesticides in urban soil: volatility and degradation. Environmental Science & Technology, 46(5), 2668–2674.

    CAS  Google Scholar 

  • Xing, B. (2001). Sorption of anthropogenic organic compounds by soil organic matter: A mechanistic consideration. Canadian Journal of Soil Science, 81((3) (Special Issue)), 317–323.

    CAS  Google Scholar 

  • Xu, C. H., & Xu, Y. (2012). The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5, 527–533.

    Google Scholar 

  • Yadva, I. C., Devi, N. L., Li, J., & Zhang, G. (2017). Polychlorinated biphenyls in Nepalese surface soil:spatial distribution, air-soil exchange ,and soil-air partitioning. Ecotoxicology And Environmental Safty, 144, 498–506.

  • Yang, D., Qi, S.-H., Zhang, J.-Q., Tan, L.-Z., Zhang, J.-P., Zhang, Y., Xu, F., Xing, X.-L., Hu, Y., Chen, W., Yang, J.-H., & Xu, M.-H. (2012). Residues of organochlorine pesticides (OCPs) in agricultural soils of Zhangzhou City, China. Pedosphere, 22(2), 178–189.

  • You, Y. H., Mou, S. H., Ye, Q., & Wen, L. Q. (2005). Research progress on organochlorine pesticide residues in soil environment. Resources Environment & Engineering, 19(2), 115–118.

    Google Scholar 

  • Yu, H.-Y., Li, F.-B., Yu, W.-M., Li, Y.-T., Yang, G.-Y., Zhou, S.-G., Zhang, T.-B., Gao, Y.-X., & Wan, H.-F. (2013). Assessment of organochlorine pesticide contamination in relation to soil properties in the Pearl River Delta, China. Science of the Total Environment, 447, 160–168.

    CAS  Google Scholar 

  • Zang, C. Z., Li, M. L., Yang, Y. L., Zhang, L. F., & Nie, L. M. (2006). Study on the Status of OCPs and PCBs Pollution in Soils in Qingdao Region. Journal of Qingdao University, 21(2), 42–48.

  • Zhu, Y., Price, O. R., Tao, S., Jones, K. C., & Sweetman, A. J. (2014). A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential? Environment International, 69, 18–27.

    CAS  Google Scholar 

  • Zhu, Y. Y., Liu, Q. Y., Li, H., Lou, X. Y., Li, S. M., & Li, Q. B. (2015). Characteristics of organochlorine pesticide residues in soils of eastern Liaoning and Shandong peninsula. Chinese Journal of Soil Science, 52(4), 888–901.

    CAS  Google Scholar 

  • Zhu, S., Niu, L., Aamir, M., Zhou, Y., Xu, C., & Liu, W. (2017). Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region,China. Science of the Total Environment, 599–600, 264–272.

    Google Scholar 

Download references

Acknowledgments

The authors thank those who contributed to discussions related to the ideas presented in this paper. Instructive comments from anonymous reviewers greatly improved this manuscript.

Funding

This study was funded by the Atmospheric Heavy Pollution Causes and Governance Research in China—Agricultural Emission Status and Strengthened Governance—Law of Soil Erosion and Dust Emission in China (No. DQGG0208-04).

Author information

Authors and Affiliations

Authors

Contributions

All the works have been finished by Jianguo Wu.

Corresponding author

Correspondence to Jianguo Wu.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 40 kb)

ESM 2

(DOC 12.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. Soil-Air Partition Coefficients of Persistent Organic Pollutants Decline from Climate Warming: a Case Study in Yantai County, Shandong Province, China. Water Air Soil Pollut 231, 371 (2020). https://doi.org/10.1007/s11270-020-04718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04718-4

Keywords

Navigation