Skip to main content
Log in

Effect of Arsenic Pollution Extent on Microbial Community in Shimen Long-Term Arsenic-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In order to investigate arsenic migration and transformation behavior under the action of microorganisms in Shimen long-term arsenic-contaminated soil under the condition of avoiding any influence of complicated soil environmental factors except increasing soil arsenic pollution degree, exogenous arsenic(III) or arsenic(V) stress experiments were carried out under the same experimental condition using the same soil sample. The changes of microbial community with exogenous arsenic concentrations and stress time were regularly monitored and comparatively analyzed. The soil microbial community shows extremely high diversities, and arsenic pollution degree affects microbial community composition rather than microbial diversity due to the long-term adaptation of microorganism to the arsenic-contaminated soil. Acidiobacteria and Nitrospirae play a key role in soil arsenic migration and transformation. Nitrospirae through producing NO3 takes part in the oxidation of As(III), and Acidiobacteria oxidizing sulfide minerals, as well as the adsorption and deposition of As(V), can enhance the soil acidity to promote soil arsenic migration and transformation, which can bring about the significant change of soil microbial community composition. Finally, its microbial community should tend to maintain a new pseudo-dynamic balance after a long time and a long-term arsenic-contaminated soil must be an arsenic oxidation-state soil. This work helps us understand why total arsenic, total organic carbon(TOC), NO3, and pH are the key environmental factors that indirectly control the mobilization and release of arsenic via influencing the structures of the microbial communities in Shimen arsenic-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angel, V., Mari, G. T., Marisol, M. S., Ignacio, S. R., Antonio, G. S., & Jose, M. I. (2011). Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten–tin mining area. Chemosphere, 85, 129–134.

    Google Scholar 

  • Avidano, L., Gamalero, E., Cossa, G. P., & Carraro, E. (2005). Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 30, 21–33.

    Google Scholar 

  • Chen, X. M., Zeng, X. C., Yahaya, K. K., Wu, W. W., Zhu, X. B., Zahid, U., & Wang, Y. X. (2020). Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. Ecotoxicology and Environmental Safety, 189, 109946–109951.

    CAS  Google Scholar 

  • Chen, Z., Wang, Y. P., Xia, D., Jiang, X. L., Fu, D., Shen, L., Wang, H. T., & Li, Q. B. (2016). Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials, 311, 20–29.

    CAS  Google Scholar 

  • Fan, L. J., Zhao, H. F., Liu, J., & Ray, L. F. (2018). The As behavior of natural arsenical-containing colloidal ferricoxyhydroxide reacted with sulfate reducing bacteria. Chemical Engineering Journal, 332, 183–191.

    CAS  Google Scholar 

  • Hu, L. F., Wang, W. J., Long, Y. Y., Wei, F., Nie, Z. Y., & Fang, C. R. (2019). Fate and migration of arsenic in large-scale anaerobic landfill. Waste Management, 87, 559–564.

    CAS  Google Scholar 

  • Hu, Y. H., Zhou, L., Li, X., Xu, F. D., Wang, L., Mo, D. Z., Zhou, L., & Wang, X. (2015). Arsenic contamination in Shimen Realgar Mine I: As spatial distribution, chemical fractionations and leaching. Journal of Environmental Sciences (China), 34(8), 1515–1521.

    CAS  Google Scholar 

  • Huang, J. H., Hu, K. N., & Decker, B. (2011). Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water, Air, and Soil Pollution, 219, 401–415.

    CAS  Google Scholar 

  • Kawa, Y. K., Wang, J., Chen, X., Zhu, X., Zeng, X. C., & Wang, Y. (2019). Reductive dissolution and release of arsenic from arsenopyrite by a novel arsenate-respiring bacterium from the arsenic-contaminated soils. International Biodeterioration & Biodegradation, 143, 104712–104716.

    CAS  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018). Arsenic speciation dynamics in paddy rice soil-water environment: sources, physicochemical and biological factors - a review. Water Research, 140, 403–414.

    CAS  Google Scholar 

  • Li, X. Q., Meng, D. L., Li, J., Yin, H. Q., Liu, H. W., Liu, X. D., Cheng, C., Xiao, Y. H., Liu, Z. H., & Yan, M. L. (2017). Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution, 231, 908–917.

    CAS  Google Scholar 

  • Lin, Z. J., Wang, X., Wu, X., Liu, D. H., Yin, Y. L., Zhang, Y., Xiao, S., & Xin, B. S. (2018). Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Environmental Pollution, 243, 1015–1025.

    CAS  Google Scholar 

  • Liu, L. W., Li, W., Song, W. P., & Guo, M. X. (2018). Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of the Total Environment, 633, 206–219.

    CAS  Google Scholar 

  • Liu, X. S. (2014). Shimen realgar: legend and sadness of a mine. Land & Resources Herald (China), 9, 86–90.

    Google Scholar 

  • Meng, X. Y., Dupont, R. D., Darwin, L. S., Astrid, R. J., & Joan, E. M. (2017). Mineralogy and geochemistry affecting arsenic solubility in sediment profiles from the shallow basin-fill aquifer of Cache Valley basin, Utah. Applied Geochemistry, 77, 126–141.

    CAS  Google Scholar 

  • Oremland, R. S., Hoeft, S. E., Santini, J. A., Bano, N., Hollibaugh, R. A., & Hollibaugh, J. T. (2002). Anaerobic oxidation of arsenite in mono lake water and by facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Applied and Environmental Microbiology, 68, 4795–4802.

    CAS  Google Scholar 

  • Pan, M. H., & Zhu, Z. L. (2013). Progress of investigations on transformation and distribution of arsenic in natural environment. Chemistry Online (China), 76, 399–404.

    CAS  Google Scholar 

  • Phan, V. T. H., Bernier-Latmani, R., Tisserand, D., Bardelli, F., Pape, P. L., Frutschi, M., Gehin, A., Couture, R. M., & Charlet, L. (2019). As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: a mechanistic study. Science of the Total Environment, 663, 718–730.

    CAS  Google Scholar 

  • Pinto, O. H. B., Silva, T. F., Vizzotto, C. S., Santana, R. H., Lopes, F. A. C., Silva, B. S., Thompson, F. L., & Kruger, R. H. (2020). Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume. BMC Microbiology, 20(1), 13 https://doi.org/10.1186/s12866-020-1698-x.

    CAS  Google Scholar 

  • Qiu, G. H., Gao, T. Y., Hong, J., Tan, W. F., Liu, F., & Zheng, L. R. (2017). Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions. Acta Geochimica., 217, 306–319.

    CAS  Google Scholar 

  • Reji, L., & Francis, C. A. (2020). Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. The ISME Journal in press (2020-May-13).

  • Sandip, S. S., Chandan, M., & Pushpanjali, M. (2018). Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India. Journal of Contaminant Hydrology, 213, 1–14.

    Google Scholar 

  • Sarun, T., Wilailak, S., & Surasak, S. (2018). Mitigation of arsenic toxicity and accumulation in hydroponically grown rice seedlings by co-inoculation with arsenite-oxidizing and cadmiumtolerant bacteria. Ecotoxicology and Environmental Safety, 162, 591–602.

    Google Scholar 

  • Seulki, J., Jin, K. H., Eun, H. J., & Kyoungphile, N. (2019). Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: clay-induced change in long-term arsenic contaminated soils. Journal of Hazardous Materials, 378, 120729–120736.

    Google Scholar 

  • Sherlyn, C. T., Jaak, T., Sandipan, S., Marika, T., Preem, J. K., Kristjan, O., Mikk, E., Poulami, C., Yeongyeong, K., Kiyoon, K., & Tongmin, S. (2018). The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecology and Evolution, 8, 6157–6168.

    Google Scholar 

  • Shi, W., Wu, W., Zeng, X. C., Chen, X., Zhu, X., & Cheng, S. (2018). Dissimilatory arsenate respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate. Ecotoxicology, 27(8), 1126–1136.

    CAS  Google Scholar 

  • Shigeki, Y., Takayuki, S., Mirai, W., Shun, T., Satoshi, S., Michihiko, I., & Seigo, A. (2018). Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities. Journal of Hazardous Materials, 34, 571–578.

    Google Scholar 

  • Shukla, A., & Srivastava, S. (2017). Emerging aspects of bioremediation of arsenic. In R. Singh & S. Kumar (Eds.), Green technologies and environmental sustainability (pp. 395–407). Cham: Springer.

    Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270.

    CAS  Google Scholar 

  • Song, B., Chyun, E., Jaffe, P. R., & Ward, B. B. (2009). Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 68, 108–111.

    CAS  Google Scholar 

  • Su, S. M., Bai, L. Y., Wei, C. B., Gao, X., Zhang, T., Wang, Y. N., Li, L. F., Wang, J. J., Wu, C. X., & Zeng, X. B. (2015). Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China. Environmental Science and Pollution Research, 22(13), 10309–10316.

    CAS  Google Scholar 

  • Tang, J. W., Liao, Y. P., Yang, Z. H., Chai, L. Y., & Yang, W. C. (2016). Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J. Soils Sediments, 16, 1519–1528.

    CAS  Google Scholar 

  • Wan, X., Dong, H. C., Feng, L., Lin, Z. L., & Luo, Q. C. (2017). Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites. Chemosphere, 178, 402–410.

    CAS  Google Scholar 

  • Wang, Y. N., Zeng, X. B., Bai, L. Y., Su, S. M., & Wu, C. X. (2018). The exogenous aging process in soil and the influences of environmental factors on aging. Journal of Agro-Environment Science (China), 37(7), 1342–1349.

    Google Scholar 

  • Wu, F., Wang, J. T., Yang, J., Li, J., & Zheng, Y. M. (2016). Does arsenic play an important role in the soil microbial community around a typical arsenic mining area. Environmental Pollution, 213, 949–956.

    CAS  Google Scholar 

  • Wu, H. B., Zeng, X. B., Tang, Y. F., Bai, L. Y., Su, S. M., Wang, Y. N., & Chen, G. (2017a). Effects of different soil dressing ratios on soybean growth and absorption of arsenic in arsenic contaminated soil. Journal of Agro-Environment Science, 36(10), 2021–2028.

    Google Scholar 

  • Wu, Y., Zhou, X. Y., Lei, M., Yang, J., Ma, J., Qiao, P. W., & Chen, T. B. (2017b). Migration and transformation of arsenic: contamination control and remediation in realgar mining areas. Applied Geochemistry, 77, 44–51.

    CAS  Google Scholar 

  • Yamamura, S., Watanabe, K., Suda, W., Tsuboi, S., & Watanabe, M. (2014). Effect of antibioticson redox transformations of arsenic and diversity of arsenite-oxidizing bacteria in sediment microbial communities. Environmental Science & Technology, 48(1), 350–357.

    CAS  Google Scholar 

  • Yan, L., Hu, H. X., Zhang, S., Chen, P., Wang, W. D., & Li, H. Y. (2017). Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, Northeast China. Electronic Journal of Biotechnology, 25, 50–57.

    CAS  Google Scholar 

  • Yang, F., Xie, S. W., Wei, C. Y., Liu, J. X., Zhang, H. Z., Chen, T., & Zhang, J. (2018). Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. Science of the Total Environment, 626, 77–86.

    CAS  Google Scholar 

  • Yang, M., Teng, Y., Ren, W. J., Huang, Y., Xu, D. F., Fu, Z. C., Ma, W. T., & Luo, Y. M. (2016). Pollution and health risk assessment of heavy metals in agricultural soil around Shimen realgar mine. Soils(China), 48(6), 1172–1178.

    Google Scholar 

  • Zeng, X. C., Guoji, E., Wang, J. N., Wang, N., Chen, X. M., Mu, Y., Li, H., Yang, Y., Liu, Y. C., & Wang, Y. X. (2016). Functions and unique diversity of genes and microorganisms involved in arsenite oxidation from the tailings of a realgar mine. Applied and Environmental Microbiology, 82, 7019–7029.

    CAS  Google Scholar 

  • Zeng, X. C., He, Z., Chen, X. Y., Qian, A. D., Cao, H. Y., & Wang, Y. X. (2018). Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria. Ecotoxicology and Environmental Safety, 165, 1–10.

    CAS  Google Scholar 

  • Zhu, X., Zeng, X. C., Chen, X., Wu, W., & Wang, Y. (2019). Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water. Ecotoxicology., 28(5), 528–538.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 31470230, 51320105006, 51604308, and 31100173), the Youth Talent Foundation of Hunan Province of China (No. 2017RS3003), and the National Science Foundation of Hunan Province of China (No. 2018JJ2486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Liu, X., Zeng, X. et al. Effect of Arsenic Pollution Extent on Microbial Community in Shimen Long-Term Arsenic-Contaminated Soil. Water Air Soil Pollut 231, 340 (2020). https://doi.org/10.1007/s11270-020-04716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04716-6

Keywords

Navigation