Skip to main content
Log in

Comparison of Chemical and Biological Strategies for the Cleanup of Diesel/Biodiesel Blend–Contaminated Groundwater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The widespread use of diesel/biodiesel blends as a transportation fuel can increase the risk of groundwater contamination, which requires remediation actions. Two pilot-field experiments were conducted to assess and compare their potential to treat groundwater contaminated with B20 (20% biodiesel and 80% diesel, v/v), using combined iron and sulfate biostimulation (CISB) and a modified Fenton system (MFS). A low-cost and sustainable product recovered from acid mine drainage was used to stimulate both iron- and sulfate-reducing conditions. The modified Fenton system was composed of magnesium peroxide to promote the slow release of hydrogen peroxide by magnesium peroxide decomposition. Fe2O3 recovered from acid mine drainage was used as catalyst for modified Fenton reaction. Both technologies demonstrated to efficiently degrade B20-blend aromatic hydrocarbons. However, the application of MFS maintained BTEX dissolved concentrations below the detection limit (1 μg L−1) over 22 months, while in CISB, the dissolved concentrations of BTEX compounds were > 50 μg L−1 after 8.4 months. Additionally, total PAH dissolved concentrations in MFS experiment were lower than those observed for the CISB plot. In MFS, microbial growth was inhibited as opposed to CISB in which microbial growth enhanced up to 3 orders of magnitude. Therefore, though MFS was more efficient to meet remediation goals relative to CISB approach, if the site requires complete restoration, less aggressive technologies such as CISB should be considered. This novel pilot study presents chemical and biological technologies that can potentially be applied to remediate diesel/biodiesel blends in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahad, J. M. E., & Slater, G. F. (2008). Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation. Science of the Total Environment, 401(1–3), 194–198. https://doi.org/10.1016/j.scitotenv.2008.02.048.

    Article  CAS  Google Scholar 

  • Aktas, D. F., Lee, J. S., Little, B. J., Ray, R. I., Davidova, I. A., Lyles, C. N., & Suflita, J. M. (2010). Anaerobic metabolism of biodiesel and its impact on metal corrosion. Energy and Fuels, 24(5), 2924–2928. https://doi.org/10.1021/ef100084j.

    Article  CAS  Google Scholar 

  • Andersen, S. L. F., Flores, R. G., Madeira, V. S., José, H. J., & Moreira, R. F. P. M. (2012). Synthesis and characterization of acicular iron oxide particles obtained from acid mine drainage and their catalytic properties in toluene oxidation. Industrial and Engineering Chemistry Research, 51(2), 767–774. https://doi.org/10.1021/ie201269y.

    Article  CAS  Google Scholar 

  • APHA. American Public Health Association. (1992). Standard methods for the examination of water and wastewater. Washington: American Public Health Association, American Water Works Association and Water Pollution Control Federation.

    Google Scholar 

  • Bianchi-Mosquera, G. C., Allen-King, R. M., & Mackay, D. M. (1994). Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound. Ground Water Monitoring & Remediation, 14(1), 120–128. https://doi.org/10.1111/j.1745-6592.1994.tb00097.x.

    Article  CAS  Google Scholar 

  • Borges, J. M., Dias, J. M., & Danko, A. S. (2014). Influence of the anaerobic biodegradation of different types of biodiesel on the natural attenuation of benzene. Water, Air, and Soil Pollution, 225, 1–10. https://doi.org/10.1007/s11270-014-2146-z.

    Article  CAS  Google Scholar 

  • Botton, S., Van Harmelen, M., Braster, M., Parsons, J. R., & Röling, W. F. M. (2007). Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiology Ecology, 62(1), 118–130. https://doi.org/10.1111/j.1574-6941.2007.00371.x.

    Article  CAS  Google Scholar 

  • Brazil, Law 13.263 from March 23 (2016). Altera a Lei 13.033, de 24 de setembro de 2014, para dispor sobre os percentuais de adição de biodiesel ao óleo diesel comercializado no território nacional. (Refers to the percentage of biodiesel added to the commercial diesel in the national territory, alters the law 13.033 from September, 24, 2014).

  • Brazil. National Environmental Council. CONAMA Resolution 396 from April 3 (2008). Dispõe sobre a classifcação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. (Refers to classification and environmental guidelines for the groundwater and provides other measures).

  • Chang, W., Um, Y., & Holoman, T. R. P. (2006). Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnology Letters, 28(6), 425–430. https://doi.org/10.1007/s10529-005-6073-3.

    Article  CAS  Google Scholar 

  • Corseuil, H. X., Monier, A. L., Fernandes, M., Schneider, M. R., Nunes, C. C., Do Rosario, M., & Alvarez, P. J. J. (2011a). BTEX plume dynamics following an ethanol blend release: Geochemical footprint and thermodynamic constraints on natural attenuation. Environmental Science and Technology, 45(8), 3422–3429. https://doi.org/10.1021/es104055q.

    Article  CAS  Google Scholar 

  • Corseuil, H. X., Monier, A. L., Gomes, A. P. N., Chiaranda, H. S., Rosário, M., & Alvarez, P. J. J. (2011b). Biodegradation of soybean and castor oil biodiesel: Implications on the natural attenuation of monoaromatic hydrocarbons in groundwater. Groundwater Monitoring & Remediation, 31(3), 111–118. https://doi.org/10.1111/j.1745-6592.2011.01333.x.

    Article  CAS  Google Scholar 

  • Dorer, C., Vogt, C., Neu, T. R., Stryhanyuk, H., & Richnow, H. H. (2016). Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environmental Pollution, 211, 271–281. https://doi.org/10.1016/j.envpol.2015.12.029.

    Article  CAS  Google Scholar 

  • Dou, J., Liu, X., Hu, Z., & Deng, D. (2008). Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. Journal of Hazardous Materials, 151(2–3), 720–729. https://doi.org/10.1016/j.jhazmat.2007.06.043.

    Article  CAS  Google Scholar 

  • Farzadkia, M., Dehghani, M., & Moafian, M. (2014). The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran. Journal of Environmental Health Science and Engineering, 12(1), 1–7. https://doi.org/10.1186/2052-336X-12-31.

    Article  CAS  Google Scholar 

  • Fedrizzi, F., Ramos, D. T., Lazzarin, H. S. C., Fernandes, M., Larose, C., Vogel, T. M., & Corseuil, H. X. (2017). A modified approach for in situ chemical oxidation coupled to biodegradation enhances light nonaqueous phase liquid source-zone remediation. Environmental Science and Technology, 51(1), 463–472. https://doi.org/10.1021/acs.est.6b03604.

    Article  CAS  Google Scholar 

  • Fowler, S. J., Dong, X., Sensen, C. W., Suflita, J. M., & Gieg, L. M. (2012). Methanogenic toluene metabolism: Community structure and intermediates. Environmental Microbiology, 14(3), 754–764. https://doi.org/10.1111/j.1462-2920.2011.02631.x.

    Article  CAS  Google Scholar 

  • Fowler, S. J., Gutierrez-Zamora, M. L., Manefield, M., & Gieg, L. M. (2014). Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiology Ecology, 89(3), 625–636. https://doi.org/10.1111/1574-6941.12364.

    Article  CAS  Google Scholar 

  • Ghaly, M. Y., Hartel, G., Mayers, R., & Haseneder, R. (2001). Oxidation of p-chlorophenol by UV/H2 O2 and photo-Fenton process. A comparative study. Waste Management, 21, 41–47. https://doi.org/10.1016/S0956-053X(00)00070-2.

    Article  CAS  Google Scholar 

  • Huang, W. H., & Kao, C. M. (2015). Bioremediation of petroleum-hydrocarbon contaminated groundwater under sulfate-reducing conditions: Effectiveness and mechanism study. Journal of Environmental Engineering, 142(3), 04015089. https://doi.org/10.1061/(asce)ee.1943-7870.0001055.

    Article  Google Scholar 

  • JEC. (2014). EU renewable energy targets in 2020: Revised analysis of scenarios for transport fuels. Luxembourg: European Union.

    Google Scholar 

  • Kashir, M., McGregor, R., Gusti, W., & Shouakar-Stash, O. (2017). Chemical oxidation using stabilized hydrogen peroxide in high temperature, saline groundwater impacted with hydrocarbons and MTBE. Remediation, 27(4), 19–28. https://doi.org/10.1002/rem.21526.

    Article  Google Scholar 

  • Kleemann, R., & Meckenstock, R. U. (2011). Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiology Ecology, 78(3), 488–496. https://doi.org/10.1111/j.1574-6941.2011.01193.x.

    Article  CAS  Google Scholar 

  • Lehman, R. M., Colwell, F. S., & Bala, G. A. (2001). Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Applied and Environmental Microbiology, 67(6), 2799–2809. https://doi.org/10.1128/AEM.67.6.2799-2809.2001.

    Article  CAS  Google Scholar 

  • Liang, C., & Lee, I. L. (2008). In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination - a proof of concept study. Journal of Contaminant Hydrology, 100(3–4), 91–100. https://doi.org/10.1016/j.jconhyd.2008.05.012.

    Article  CAS  Google Scholar 

  • Liang, S. H., Kao, C. M., Kuo, Y. C., Chen, K. F., & Yang, B. M. (2011). In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Research, 45(8), 2496–2506. https://doi.org/10.1016/j.watres.2011.02.005.

    Article  CAS  Google Scholar 

  • Livermore, J. A., Jin, Y. O., Arnseth, R. W., Lepuil, M., & Mattes, T. E. (2013). Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater. Environmental Science and Technology, 47(14), 7672–7678. https://doi.org/10.1021/es4012788.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., & Lonergan, D. J. (1989). Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology, 55(3), 700–706.

    Article  CAS  Google Scholar 

  • Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H., & Schink, B. (2000). Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology, 66(7), 2743–2747. https://doi.org/10.1128/AEM.66.7.2743-2747.2000.

    Article  CAS  Google Scholar 

  • Medjor, W. O., Namessan, O. N., & Medjor, E. A. (2018). Optimization, kinetics, physicochemical and ecotoxicity studies of Fenton oxidative remediation of hydrocarbons contaminated groundwater. Egyptian Journal of Petroleum, 27(2), 227–233. https://doi.org/10.1016/j.ejpe.2017.07.001.

    Article  Google Scholar 

  • Müller, J. B., Ramos, D. T., Larose, C., Fernandes, M., Lazzarin, H. S. C., Vogel, T. M., & Corseuil, H. X. (2017). Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 326, 229–236. https://doi.org/10.1016/j.jhazmat.2016.12.005.

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

  • Nam, K., Rodriguez, W., & Kukor, J. J. (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere, 45(1), 11–20. https://doi.org/10.1016/S0045-6535(01)00051-0.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. https://doi.org/10.1016/S0304-3894(02)00282-0.

    Article  CAS  Google Scholar 

  • Owsianiak, M., Chrzanowski, Ł., Szulc, A., Staniewski, J., Olszanowski, A., Olejnik-Schmidt, A. K., & Heipieper, H. J. (2009). Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresource Technology, 100(3), 1497–1500. https://doi.org/10.1016/j.biortech.2008.08.028.

    Article  CAS  Google Scholar 

  • Polli, F., Zingaretti, D., Crognale, S., Pesciaroli, L., D’Annibale, A., Petruccioli, M., & Baciocchi, R. (2018). Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil. Chemosphere, 191, 580–588. https://doi.org/10.1016/j.chemosphere.2017.10.081.

    Article  CAS  Google Scholar 

  • Ramos, D. T., da Silva, M. L. B., Chiaranda, H. S., Alvarez, P. J. J., & Corseuil, H. X. (2013). Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation, 24(3), 333–341. https://doi.org/10.1007/s10532-012-9589-y.

    Article  CAS  Google Scholar 

  • Ramos, D. T., da Silva, M. L. B., Nossa, C. W., Alvarez, P. J. J., & Corseuil, H. X. (2014). Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation, 25, 681–691. https://doi.org/10.1007/s10532-014-9691-4.

    Article  CAS  Google Scholar 

  • Ramos, D. T., Lazzarin, H. S. C., Alvarez, P. J. J., Vogel, T. M., Fernandes, M., do Rosário, M., & Corseuil, H. X. (2016). Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. Journal of Contaminant Hydrology, 193, 48–53. https://doi.org/10.1016/j.jconhyd.2016.09.002.

    Article  CAS  Google Scholar 

  • Reinhard, M., Shang, S., Kitanidis, P. K., Orwin, E., Hopkins, G. D., & LeBron, C. A. (1997). In situ BTEX biotransformation under intrinsic and nitrate- and sulfate-reducing conditions. Environmental Science Technology, 31, 128–136. https://doi.org/10.1021/es9509238.

    Article  Google Scholar 

  • Schmidtke, T., White, D., & Woolard, C. (1999). Oxygen release kinetics from solid phase oxygen in Arctic Alaska. Journal of Hazardous Materials, 64(2), 157–165. https://doi.org/10.1016/S0304-3894(98)00243-X.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., & Bahr, J. M. (2002). Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: Parameter estimation from natural-gradient tracer experiments. Journal of Contaminant and Hydrology, 55, 29–56. https://doi.org/10.1016/S0169-7722(01)00184-X.

    Article  CAS  Google Scholar 

  • Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259–5264. https://doi.org/10.1016/j.biortech.2011.02.017.

    Article  CAS  Google Scholar 

  • Stolz, J. F.; Follis, P.; Floro, G.; Donofrio, R.; Buzzelli, J.; Griffin, M. (1995). Aerobic and anaerobic biodegradation of the methyl esterified fatty acids of soy diesel in freshwater and soil environments. Duquesne University, Pittsburg. 

  • Sun, W., Sun, X., & Cupples, A. M. (2014). Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. International Biodeterioration and Biodegradation, 88, 13–19. https://doi.org/10.1016/j.ibiod.2013.11.014.

    Article  CAS  Google Scholar 

  • Sutton, N. B., Kalisz, M., Krupanek, J., Marek, J., et al. (2014). Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site. Environmental Science and Technology, 48(4), 2352–2360. https://doi.org/10.1021/es404512a.

    Article  CAS  Google Scholar 

  • Truex, M. J., Newell, C. J., Looney, B. B., & Vangelas, K. M. (2007). Scenarios evaluation tool for chlorinated solvent MNA (a research study of the monitored natural attenuation/enhanced attenuation for chlorinated solvents technology alternative project). Savannah River National Laboratory: Aiken.

    Google Scholar 

  • Tsai, J. C., Kumar, M., & Lin, J. G. (2009). Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. Journal of Hazardous Materials, 164(2–3), 847–855. https://doi.org/10.1016/j.jhazmat.2008.08.101.

    Article  CAS  Google Scholar 

  • USDE. United States Department of Energy (2018). Alternative fuels data center: biodiesel basics. Available in: <http://www.afdc.energy.gov/fuels/biodiesel_blends.html>. Accessed 15 Aug 2018.

  • USEPA. United States Environmental Protection Agency. (1998). Carcinogenic effects of benzene: an update, V. 63 (p. 30495). Washington: United States Environmental Protection Agency.

    Google Scholar 

  • Usman, M., Hanna, K., & Haderlein, S. (2016). Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. Science of the Total Environment, 569–570, 179–190. https://doi.org/10.1016/j.scitotenv.2016.06.135.

    Article  CAS  Google Scholar 

  • Valderrama, C., Alessandri, R., Aunola, T., Cortina, J. L., Gamisans, X., & Tuhkanen, T. (2009). Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-comtaminated soil. Journal of Hazardous Materials, 166(2–3), 594–602. https://doi.org/10.1016/j.jhazmat.2008.11.108.

    Article  CAS  Google Scholar 

  • Venny, Gan, S., & Ng, H. K. (2012). Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment. Science of the Total Environment, 419, 240–249. https://doi.org/10.1016/j.scitotenv.2011.12.053.

    Article  CAS  Google Scholar 

  • Wiedemeier, T. H., Wilson, J. T., Kampbell, D. H., Miller, R. N., & Hansen, J. E. (1995). Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater. Denver: PARSONS ENGINEERING SCIENCE INC DENVER CO.

    Google Scholar 

  • Wu, S., Yassine, M. H., Suidan, M. T., & Venosa, A. D. (2015). Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions. Water Research, 87, 395–402. https://doi.org/10.1016/j.watres.2015.09.024.

    Article  CAS  Google Scholar 

  • Xie, G., & Barcelona, M. J. (2003). Sequential chemical oxidation and aerobic biodegradatio of equivalent carbon number-based hydrocarbon fractions in jet fuel. Environmental Science and Technology, 37(20), 4751–4760. https://doi.org/10.1021/es026260t.

    Article  CAS  Google Scholar 

  • Xue, Y., Gu, X., Lu, S., Miao, Z., Brusseau, M. L., Xu, M., et al. (2016). The destruction of benzene by calcium peroxide activated with Fe(II) in water. Chemical Engineering Journal, 302, 187–193. https://doi.org/10.1016/j.cej.2016.05.016.

    Article  CAS  Google Scholar 

  • Xue, Y., Lu, S., Fu, X., Sharma, V. K., Mendoza-Sanchez, I., Qiu, Z., & Sui, Q. (2018). Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: Enhanced degradation by chelating agents. Chemical Engineering Journal, 331(July 2017), 255–264. https://doi.org/10.1016/j.cej.2017.08.099.

    Article  CAS  Google Scholar 

  • Yassine, M. H., Wu, S., Suidan, M. T., & Venosa, A. D. (2013). Aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends. Environmental Science and Technology, 47(9), 4619–4627. https://doi.org/10.1021/es400360v.

    Article  CAS  Google Scholar 

Download references

Funding

This research was primarily funded by Petróleo Brasileiro S/A, PETROBRÁS (contract number: 0050.0076426.12.9). Additional funds were partly provided by the Coordination of Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Braun Müller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, J.B., Toledo Ramos, D., Fernandes, M. et al. Comparison of Chemical and Biological Strategies for the Cleanup of Diesel/Biodiesel Blend–Contaminated Groundwater. Water Air Soil Pollut 231, 332 (2020). https://doi.org/10.1007/s11270-020-04661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04661-4

Keywords

Navigation