Skip to main content
Log in

Efficient Removal of Paracetamol by Manganese Oxide Octahedral Molecular Sieves (OMS-2) and Persulfate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pharmaceutically active compounds are gradually increasing in different environments such as surface waters, groundwater, and soil. Paracetamol is a pharmaceutical used as a pain reliever and antipyretic. In this study, paracetamol removal was investigated using manganese oxide octahedral molecular sieves (OMS-2) and persulfate. In the first stage of the study, OMS-2 was produced in a laboratory, and then paracetamol removal was investigated in OMS-2 only, persulfate only, and a combination of OMS-2/PS. When using 5 mM persulfate and 0.1 g/L OMS-2, the paracetamol removal efficiency increased to 99.5%. The use of OMS-2 with persulfate resulted in faster and more effective removal of paracetamol compared with OMS-2 only and persulfate only. In another stage of the study, the effects of reaction temperature and pH were investigated. For this purpose, the pH was changed in the range of 2–8, while the temperature was examined at 20, 30, and 40 °C. A high rate of paracetamol removal occurred at all pH and temperature values tested. Paracetamol removal was investigated at different OMS-2 and persulfate concentrations, optimum OMS-2 amount was determined as 0.1 g/L, and optimum persulfate dosage was 20 mM. The reusability of the OMS-2 catalyst was investigated, showing a decrease in removal efficiency with each cycle. In the later stages of the study, free radical quenching studies, the effect of humic acid and inorganic anions and the characterization of the synthesized OMS-2 were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Akay, C., & Tezel, U. (2020). Biotransformation of acetaminophen by intact cells and crude enzymes of bacteria: A comparative study and modelling. Science of the Total Environment, 703, 134990.

    Article  CAS  Google Scholar 

  • Bavasso, I., Poggi, C., & Petrucci, E. (2020). Enhanced degradation of paracetamol by combining UV with electrogenerated hydrogen peroxide and ozone. Journal of Water Process Engineering, 34, 101102.

    Article  Google Scholar 

  • Chen, X., Lu, X., Liu, H., Li, J., Xiang, W., Zhang, R., & Lu, J. (2017). Oxidation and mineralization of Mn2+ ions mediated by Pseudomonas putida: Insights from an experimental study. Acta Geologica Sinica, 91(4), 1276–1285.

    Article  CAS  Google Scholar 

  • Du, J., Bao, J., Liu, Y., Ling, H., Zheng, H., Kim, S. H., & Dionysiou, D. D. (2016). Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol a. Journal of Hazardous Materials, 320, 150–159.

    Article  CAS  Google Scholar 

  • Duan, L., Sun, B., Wei, M., Luo, S., Pan, F., Xu, A., & Li, X. (2015). Catalytic degradation of acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. Journal of Hazardous Materials, 285, 356–365.

    Article  CAS  Google Scholar 

  • Fang, G., Wu, W., Liu, C., Dionysiou, D. D., Deng, Y., & Zhou, D. (2017). Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Applied Catalysis B: Environmental, 202, 1–11.

    Article  CAS  Google Scholar 

  • Hajnajafi, M., Khorshidi, A., Gilani, A. G., & Heidari, B. (2018). Catalytic degradation of malachite green in aqueous solution by porous manganese oxide octahedral molecular sieve (OMS-2) nanorods. Research on Chemical Intermediates, 44, 3313–3323.

    Article  CAS  Google Scholar 

  • Huang, J., & Zhang, H. (2019). Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment International, 133, 105141.

    Article  CAS  Google Scholar 

  • Jo, Y.-H., Hong, S.-H., Park, T.-J., & Do, S.-H. (2014). The synthesized and thermally modified Mn-Ca–FeOOH composite in persulfate system: Its role to discolor methylene blue. Applied Surface Science, 301, 576–583.

    Article  CAS  Google Scholar 

  • Katal, R., Farahani, M. H. D. A., & Jiangyong, H. (2020). Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2. Separation and Purification Technology, 230, 115859.

    Article  CAS  Google Scholar 

  • Li, Y., Liu, L.-D., Liu, L., Liu, Y., Zhang, H.-W., & Han, X. (2016). Efficient oxidation of phenol by persulfate using manganite as a catalyst. Journal of Molecular Catalysis A: Chemical, 411, 264–271.

    Article  CAS  Google Scholar 

  • Li, J., Zhu, J., Fang, L., Nie, Y., Tian, N., Tian, X., Lu, L., Zhou, Z., Yang, C., & Li, Y. (2020). Enhanced peroxymonosulfate activation by supported microporous carbon for degradation of tetracycline via non-radical mechanism. Separation and Purification Technology, 240, 116617.

    Article  CAS  Google Scholar 

  • Liu, C., Pan, D., Tang, X., Hou, M., Zhou, Q., & Zhou, J. (2016a). Degradation of rhodamine b by the α-MnO2/peroxymonosulfate system. Water Air & Soil Pollution, 227(3), 92.

    Article  Google Scholar 

  • Liu, Q., Duan, X., Sun, H., Wang, Y., Tade, M. O., & Wang, S. (2016b). Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation. The Journal of Physical Chemistry C, 120(30), 16871–16878.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, S., Wu, Y., Chen, H., Shi, Y., Liu, M., & Dong, W. (2019). Degradation of ibuprofen by thermally activated persulfate in soil systems. Chemical Engineering Journal, 356, 799–810.

    Article  CAS  Google Scholar 

  • Peng, J., Lu, X., Jiang, X., Zhang, Y., Chen, Q., Lai, B., & Yao, G. (2018). Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism. Chemical Engineering Journal, 354, 740–752.

    Article  CAS  Google Scholar 

  • Sinha, A., Singh, V. N., Mehta, B. R., & Khare, S. K. (2011). Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. Journal of Hazardous Materials, 192, 620–627.

    Article  CAS  Google Scholar 

  • Song, Q., Feng, Y., Liu, G., & Lv, W. (2019). Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chemical Engineering Journal, 361, 929–936.

    Article  CAS  Google Scholar 

  • Sun, M., Lei, Y., Cheng, H., Ma, J., Qin, Y., Kong, Y., & Komarneni, S. (2020). Mg doped CuOeFe2O3 composites activated by persulfate as highly active heterogeneous catalysts for the degradation of organic pollutants. Journal of Alloys and Compounds, 825, 154036.

    Article  CAS  Google Scholar 

  • Tepe, O. (2018). Catalytic removal of remazol brilliant blue r by manganese oxide octahedral molecular sieves and persulfate. Journal of Environmental Engineering, 144(9), 04018087.

    Article  Google Scholar 

  • Tunç, M. S. (2019). Decolorization of azo dye Everdirect Supra Red BWS in an aqueous solution by heat-activated persulfate: Optimization using response surface methodology. Desalination and Water Treatment, 158, 372–384.

    Article  Google Scholar 

  • Wang, L., & Bian, Z. (2020). Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation. Chemosphere, 239, 124815.

    Article  CAS  Google Scholar 

  • Wang, F., Dai, H., Deng, J., Bai, G., Ji, K., & Liu, Y. (2012). Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene. Environmental Science & Technology, 46, 4034–4041.

    Article  CAS  Google Scholar 

  • Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., & Wang, S. (2016). 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. Journal of Hazardous Materials, 301, 56–64.

    Article  CAS  Google Scholar 

  • Wang, S., Wu, J., Lu, X., Xu, W., Gong, Q., Ding, J., Dan, B., & Xie, P. (2019). Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways. Chemical Engineering Journal, 358, 1091–1100.

    Article  CAS  Google Scholar 

  • Wu, Y., Feng, R., Song, C., Xing, S., Gao, Y., & Ma, Z. (2017). Effect of reducing agent on the structure and activity of manganese oxide octahedral molecular sieve OMS-2 in catalytic combustion of o-xylene. Catalysis Today, 281, 500–506.

    Article  CAS  Google Scholar 

  • Wu, M. H., Shi, J., & Deng, H. P. (2018). Metal doped manganese oxide octahedral molecular sieve catalysts for degradation of diclofenac in the presence of peroxymonosulfate. Arabian Journal of Chemistry, 11, 924–934.

    Article  CAS  Google Scholar 

  • Wu, M., Fu, K., Deng, H., & Shi, J. (2019a). Cobalt tetracarboxyl phthalocyanine-manganese octahedral molecular sieve (OMS-2) as a heterogeneous catalyst of peroxymonosulfate for degradation of diclofenac. Chemosphere, 219, 756–765.

    Article  CAS  Google Scholar 

  • Wu, J., Wang, B., Blaney, L., Peng, G., Chen, P., Cui, Y., Deng, S., Wang, Y., Huang, J., & Yu, G. (2019b). Degradation of sulfamethazine by persulfate activated with organomontmorillonite supported nano-zero valent iron. Chemical Engineering Journal, 361, 99–108.

    Article  CAS  Google Scholar 

  • Zhang, Q., Cheng, S., Xia, H., Zhang, L., Zhou, J., Li, C., Shu, J., & Jiang, X. (2019). Paracetamol degradation performance and mechanisms using microwave-assisted heat-activated persulfate in solutions. Water Air & Soil Pollution, 230, 271.

    Article  CAS  Google Scholar 

  • Zhang, T., Yang, Y., Li, X., Yu, H., Wang, N., Li, H., Du, P., Jiang, Y., Fan, X., & Zhou, Z. (2020a). Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation. Separation and Purification Technology, 239, 116537.

    Article  CAS  Google Scholar 

  • Zhang, T., Yang, Y., Gao, J., Li, X., Yu, H., Wang, N., Du, P., Yu, R., Li, H., Fan, X., & Zhou, Z. (2020b). Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment. Separation and Purification Technology, 240, 116575.

    Article  CAS  Google Scholar 

  • Zhou, Z.-G., Du, H.-M., Dai, Z., Mu, Y., Tong, L.-L., Xing, Q.-J., Liu, S.-S., Ao, Z., & Zou, J.-P. (2019). Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms. Chemical Engineering Journal, 374, 170–180.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present article includes the master thesis data of Zeynep Tunç.

Funding

This study was funded by the Firat University Scientific Research Projects Management Unit (FUBAP) (MF 17.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Tepe.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepe, O., Tunç, Z., Yıldız, B. et al. Efficient Removal of Paracetamol by Manganese Oxide Octahedral Molecular Sieves (OMS-2) and Persulfate. Water Air Soil Pollut 231, 238 (2020). https://doi.org/10.1007/s11270-020-04620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04620-z

Keywords

Navigation