Skip to main content
Log in

Novel Silver and Bismuth Tungstate-Based Nanostructures Synthesized by a Green Route and Their Application to Dye Photodegradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Organic dyes constitute one of the main pollutants existing in wastewater, perturbing aquatic life and causing environmental problems. Photocatalytic oxidation represents an alternative process for effective and easy degradation of dyes. In this study, the synthesis of novel silver and bismuth tungstate-based nanostructures with high photocatalytic activity for photodegrading methylene blue (MB) dye is described. The novel, as-prepared, Ag8W4O16/AgBiW2O8/Bi2WO6 photocatalyst improved MB decomposition efficiency achieving a photodegradation of 82.50% within 40 min under UV irradiation. Herein, the holes (h+) are the main oxidative species in the MB degradation process. Moreover, the photocatalytic mechanisms of MB degradation by using the AgBiW2O8/Bi2WO6 and Ag8W4O16/AgBiW2O8/Bi2WO6 heterojunctions is postulated. The synthesis is conducted by a green and combined methodology that includes the use of a metathesis reaction (double displacement reaction)/molten salt procedure. This methodology is simple, effective, high-yield (95%), and intermediate temperature, carried out in normal atmospheric conditions and using simple equipment. The particles were obtained in NaNO3 at 350 °C (2 h) showing spherical-like shapes with sizes from 10 to 59 nm according to the Ag content in samples. SBET and Dp values obtained for samples varied from 8.1 to 10.2 m2 g−1 and 17.67 to 32.15 nm, respectively. The Ag load in samples showed an important role in the phase composition of photocatalysts obtaining AgBiW2O8/Bi2WO6 and Ag8W4O16/AgBiW2O8/Bi2WO6-type heterostructures.

The charge transfer of the photogenerated carriers (e and h+) in the novel as-prepared Ag8W4O16/AgBiW2O8/Bi2WO6 heterostructure for degrading MB dye under UV light irradiation: the e transfers from Ag8W4O16 to Bi2WO6 and then to the AgBiW2O8, whereas the h+ was relocated from AgBiW2O8 to Bi2WO6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afanasiev, P., & Geantet, C. (1998). Synthesis of solid materials in molten nitrates. Coordination Chemistry Reviews., 178, 1725–1752.

    Article  Google Scholar 

  • Anderson, A. J., Blair, R. G., Hick, S. M., & Kaner, R. B. (2016). Microwave initiated solid-state metathesis routes to Li2SiN2. Journal of Materials Chemistry, 16, 1318–1322.

    Article  CAS  Google Scholar 

  • Aurivillius, B. (1949). Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Arkiv för Kemi, 1(54), 463–480.

    CAS  Google Scholar 

  • Chaiwichian, S., Inceesungvorn, B., Wetchakun, K., Phanichphant, S., Kangwansupamonkon, W., & Wetchakun, N. (2014). Highly efficient visible-light-induced photocatalytic activity of B2WO6/BiVO4 heterojunction photocatalysts. Materials Research Bulletin, 54, 28–33.

    Article  CAS  Google Scholar 

  • Djani, H., Bousquet, E., Kellou, A., & Ghosez, P. (2012). First-principles study of the ferroelectric Aurivillius phase Bi2WO6. Physical Review B, 86, 054107.

    Article  CAS  Google Scholar 

  • Donald, T. D., & Valentine, J. S. (1981). How super is superoxide? Accounts of Chemical Research, 14, 393–400.

    Article  Google Scholar 

  • Du, Y. B., Niu, C. G., Zhang, L., Ruan, M., Wen, X. J., Zhang, X. G., & Zeng, G. M. (2017). Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property. Molecular Catalysis, 436, 100–110.

    Article  CAS  Google Scholar 

  • Dumrongrojthanath, P., Thongtem, T., Phuruangrat, A., & Thongtem, S. (2013). Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activity. Superlattices and Microstructures, 64, 196–203.

    Article  CAS  Google Scholar 

  • Fang, X., Yao, M., Guo, L., Xu, Y., Zhou, W., Zhuo, M., Shi, C., Liu, L., Wang, L., Li, X., & Chen, W. (2017). One-step, solventless, and scalable mechanosynthesis of WO2·2H2O ultrathin narrow nanosheets with superior UV-Vis-light-driven photocatalytic activity. ACS Sustainable Chemistry and Engineering, 5, 10735–10743.

    Article  CAS  Google Scholar 

  • Gui, M. S., & Zhang, W. D. (2011). Preparation and modification of hierarchical nanostructured Bi2WO6 with high visible light-induced photocatalytic activity. Nanotechnology, 22, 265601.

    Article  CAS  Google Scholar 

  • Gui, M. S., Zhang, W. D., Su, Q. X., & Chen, C. H. (2011). Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts. Journal of Solid State Chemistry, 184, 1977–1982.

    Article  CAS  Google Scholar 

  • Halder, N. C., & Wagner, C. N. J. (1966). Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallographica, 20, 312–313.

    Article  CAS  Google Scholar 

  • Hao, T. J., Li, F. T., Chen, F., Chai, M. J., Liu, R. H., & Wang, X. J. (2004). In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities. Materials Letters, 124, 1–3.

    Article  CAS  Google Scholar 

  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157.

    Article  CAS  Google Scholar 

  • Huang, X., & Chen, H. (2013). One-pot hydrothermal synthesis of Bi2O2CO3/Bi2WO6 visible light photocatalysts with enhanced photocatalytic activity. Applied Surface Science, 284, 843–848.

    Article  CAS  Google Scholar 

  • Janz, G. J. (1967). Molten salts handbook. New York, NY: Academic Press Inc.

    Google Scholar 

  • Kendall, K. R., Navas, C., Thomas, J. K., & Zur-Loye, H. C. (1996). Recent developments in oxide ion conductors: Aurivillius phases. Chemistry of Materials, 18, 642–649.

    Article  Google Scholar 

  • Kimura, T., & Yamaguchi, T. (1982). Morphology of Bi2WO6 powders obtained in the presence of fused salts. Journal of Materials Science, 17, 1863–1870.

    Article  CAS  Google Scholar 

  • Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials. Journal of the Optical Society of America., 38, 448–457.

    Article  CAS  Google Scholar 

  • Kubelka, P., & Munk, F. (1931). Ein beitrag zur optik der farbanstriche. Z. Technical Physics, 12, 593–601.

    Google Scholar 

  • LeBail, A. (2005). Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction, 20, 316.

    Article  CAS  Google Scholar 

  • Li, Z. Q., Chen, X. T., & Xue, Z. L. (2013). Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3-Bi2WO6 composite. Journal of Colloid and Interface Science, 394, 69–77.

    Article  CAS  Google Scholar 

  • Li, J., Guo, Z., & Zhu, Z. (2014). Ag/Bi2WO6 plasmonic composites with enhanced visible photocatalytic activity. Ceramics International, 40, 6495–6501.

    Article  CAS  Google Scholar 

  • Longo, C., Galante, M. T., Firzmorris, R., Zhang, J. Z., Taylor, S. F. R., Mohapatra, J., Liu, J. P., Duarte, L. G. T. A., Hossain, M. K., Hardacre, C., & Rajeshwar, K. (2018). Complex oxides based on silver, bismuth and tungsten: Syntheses, characterization and photoelectrochemical behavior. Journal of Physic Chemistry C, 122, 13473–13480.

    Article  CAS  Google Scholar 

  • Mączka, M., Fuentes, A. F., Kępiński, L., Diaz-Guillen, M. R., & Hanuza, J. (2010). Synthesis and electrical, optical and phonon properties of nanosized Aurivillius phase Bi2WO6. Materials Chemistry and Physics, 120, 289–295.

    Article  CAS  Google Scholar 

  • Mao, Y., Park, T. J., Zhang, F., Zhou, H., & Wong, S. S. (2007). Environmentally friendly methodologies of nanostructure synthesis. Small, 3, 1122–1139.

    Article  CAS  Google Scholar 

  • Mendoza-Mendoza, E., Nuñez-Briones, A. G., García-Cerda, L. A., Peralta-Rodríguez, R. D., & Montes-Luna, A. J. (2018). One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceramics International, 44, 6176–6180.

    Article  CAS  Google Scholar 

  • Obregón-Alfaro, S., & Martínez-de la Cruz, A. (2010). Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and B2W2O9 obtained by co-precipitation method. Applied Catalysis A: General, 383, 128–133.

    Article  CAS  Google Scholar 

  • Pirhashemi, M., Habibi-Yangjeh, A., & Rahim-Pouran, S. (2019). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial Engineering Chemistry, 62, 1–25.

    Article  CAS  Google Scholar 

  • Rao, C. N. R., Prakash, B., Natarajan, M., (1975). Crystal structure transformations in inorganic nitrites, nitrates, and carbonates; pp. 48, in the National Standard Reference Data System (NSRDS-NBS 53). National Bureau of standards, U.S. Department of Commerce, Washington.

  • Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G. (2014). Adsorption by powders and porous solids. Principles, methodology and applications. 2nd edition, Oxford, UK: Academic Press.

  • Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Pérez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of methylene blue from aqueous solution onto white pine (pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research, 27, 32–40.

    Article  CAS  Google Scholar 

  • Sanoop, P. K., Anas, S., Ananthakumar, S., Gunasekar, V., Saravanan, R., & Ponnusami, V. (2016). Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation. Arabian Journal of Chemistry, 9, S1618–S1626.

    Article  CAS  Google Scholar 

  • Sun, S., & Wang, W. (2014). Advanced chemical composition and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Advances, 4, 47136–47152.

    Article  CAS  Google Scholar 

  • Wang, X., Zhan, S., Wang, Y., Wang, P., Yu, H., Yu, J., & Hu, C. (2014). Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. Journal of Colloid and Interface Science, 422, 30–37.

    Article  CAS  Google Scholar 

  • Withers, R. L., Thompson, J. G., & Rae, A. D. (1991). The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi2TiNbO9 and Bi2WO6. Journal of Solid State Chemistry, 94, 404–417.

    Article  CAS  Google Scholar 

  • Yamani, Z. H. (2018). Comparative study on photocatalytic degradation of methylene blue by Degussa P25 titania: Pulsed laser light versus continuous broad spectrum lamp irradiation. Arabian Journal for Science and Engineering, 34, 423–432.

    Article  CAS  Google Scholar 

  • Yu, J., Xiong, J., Cheng, B., Yu, Y., & Wang, J. (2005). Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. Journal of Solid State Chemistry, 178, 1968–1972.

    Article  CAS  Google Scholar 

  • Yu, Y., Liu, Y., Wu, X., Weng, Z., Hou, Y., & Wu, L. (2015). Enhanced visible light photocatalytic degradation of metoprolol by Ag-Bi2WO6-graphene composite. Separation and Purification Technology, 142, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, L. Z., Xie, T. F., & Wang, D. J. (2009). Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. Journal of Physical Chemistry C, 113, 7371–7378.

    Article  CAS  Google Scholar 

  • Zhao, X., Xu, T., Yao, W., Zhang, C., & Zhu, Y. (2007). Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Applied Catalysis B: Environmental, 72, 92–97.

    Article  CAS  Google Scholar 

  • Zhou, L., Jin, C., Yu, Y., Chi, F., Ran, S., & Lv, Y. (2016a). Molten salt synthesis of Bi2WO6 powders with enhanced visible-light-induced photocatalytic activities. Journal of Alloys and Compounds, 680, 301–308.

    Article  CAS  Google Scholar 

  • Zhou, L., Jin, C. G., Yu, Y. L. J., Lu, Z., & Ran, S. L. (2016b). Effects of precursors on the synthesis and properties of Bi2WO6 photocatalyst by molten salt method. Chinese Journal of Process Engineering, 16, 170–175.

    CAS  Google Scholar 

Download references

Acknowledgments

E. Mendoza-Mendoza would like to thank the CONACYT for Catedras program, project 864. The authors thank CONACYT through Laboratorio Nacional de Micro y Nanofluídica and Laboratorio Nacional de Materiales Grafénicos. The authors would also like to thank J.A. Mercado-Silva and E.D. Barriga-Castro for the UV-VIS measurements and TEM studies, respectively.

Funding

This study was financially supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through Project CB-2016-285350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mendoza-Mendoza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• AgBiW2O8/Bi2WO6 and Ag8W4O16/AgBiW2O8/Bi2WO6 heterostructures were synthesized.

• The particles showed spherical-like shapes with sizes varying from 10 to 59 nm.

• Ag8W4O16/AgBiW2O8/Bi2WO6 photocatalysts improved MB degradation efficiency.

• Holes are the main oxidative species in the MB degradation process.

• MB photodegradation mechanism by using the prepared heterostructures is presented.

Electronic supplementary material

Fig. S1

(DOCX 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Mendoza, E., Nuñez-Briones, A.G., Ysiwata-Rivera, A.P. et al. Novel Silver and Bismuth Tungstate-Based Nanostructures Synthesized by a Green Route and Their Application to Dye Photodegradation. Water Air Soil Pollut 231, 219 (2020). https://doi.org/10.1007/s11270-020-04566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04566-2

Keywords

Navigation