Skip to main content

Advertisement

Log in

Springs’ Water Quality Assessment in Areas with Different Degrees of Forest Conservation: a Study in Tropical Climate Basins

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Riparian vegetation has a fundamental role in protecting water bodies due to its ability to retain potential contaminants. Therefore, the objective of this work was to evaluate the quality of water according to the different land uses and state of conservation of forest vegetation in springs of tropical climate basins (Bahia, Brazil). Eighteen points at ten rural communities were selected in the Jacuípe and Joanes river basins. In relation to the degree of conservation, the areas were classified as preserved, disturbed or degraded. All the evaluated parameters presented values above the legal standards defined both by international legislation (USEPA and Decree-Law no 152/2017) and also by Brazilian legislation (CONAMA Resolution 357/05) for “degraded” zones. The aluminum concentration (Al3+) presented a variation of 0.01 to 4.20 mg L−1, iron (Fe) of 0.01 to 4.50 mg L−1, nitrogen (N) of 0.00 to 5.20 mg L−1, nitrate (NO3) of 0.00 to 14.50 mg L−1, nitrite (NO2) of 0.01 to 2.50 mg L−1, phosphorus (P) of 0.00 to 2.22 mg L−1, orthophosphate (PO43−) of 0.00 to 6.80 mg L−1 and the pH presented a variation between 4.30 and 6.80. In general, it was observed that the values of water quality parameters are directly related to the state of conservation of the riparian zone. Based on this, it is concluded that the water quality monitoring permits to evaluate the influence of changes in the environment and the role of riparian zones in the protection of those water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulsattar, B. O., Al-Saryi, N. A., Abbas, M. H., & Abdulhussein, A.-R. A. (2020). Isolation and purification of Escherichia coli bacteriophage from Tigris River, Baghdad, Iraq. Gene Reports, 19, 100591. https://doi.org/10.1016/j.genrep.2020.100591.

    Article  Google Scholar 

  • Aguiar Jr., T. R., Bortolozo, F. R., Hansel, F. A., Rasera, K., & Ferreira, M. T. (2015a). Riparian buffer zones as pesticide filters of no-till crops. Environmental Science and Pollution Research, 22(14), 10618–10626. https://doi.org/10.1007/s11356-015-4281-5.

    Article  CAS  Google Scholar 

  • Aguiar Jr., T. R., Rasera, K., Parron, L. M., Brito, A. G., & Ferreira, M. T. (2015b). Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: The impact of no-till crops practices. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2014.10.031.

  • Aguiar Jr., T. R., Bortolozo, F. R., & Parron, L. M. (2019). Organic matter content in riparian areas of soil composed of woody vegetation and grass and its effects on pesticide adsorption. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 67–72. https://doi.org/10.1007/s40093-018-0229-3.

    Article  Google Scholar 

  • Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985–1990. https://doi.org/10.1126/science.1067123.

    Article  CAS  Google Scholar 

  • APHA. (2017). Standard methods for the examination of water and wastewater, 23nd edition. American Public Health Association, American Water Works Association, Water Environment Federation.

  • Bahia. Superintendência de Estudos Econômicos e Sociais da Bahia. (1998). Analysis of climatic attributes of the State of Bahia. Salvador: Studies and Research Series, 1, 1–85 (in Brazilian Portuguese).

    Google Scholar 

  • Baird, C. (2002). Environmental chemistry (2nd ed.). Porto Alegre: Bookman (in Brazilian Portuguese).

    Google Scholar 

  • Barakat, A., Meddah, R., Afdali, M., & Touhami, F. (2018). Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Physics and Chemistry of the Earth, 104, 39–46. https://doi.org/10.1016/j.pce.2018.01.006.

    Article  Google Scholar 

  • Batayneh, A. T. (2012). Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. International journal of Environmental Science and Technology, 9(1), 153–162. https://doi.org/10.1007/s13762-011-0009-3.

    Article  CAS  Google Scholar 

  • Benstead, J. P., & Pringle, C. M. (2004). Deforestation alters the resource base and biomass of endemic stream insects in eastern Madagascar. Freshwater Biology. https://doi.org/10.1111/j.1365-2427.2004.01203.x.

  • Brazil, Conama - Conselho Nacional do Meio Ambiente. (2005). Resolution n°357, of March 17, 2005. Official Gazette n° 53, Brasilia, Brasil, 58–63. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459.

  • Brazil. República Federativa do Brasil. (2012). Federal Law n° 12.651, of May 25, 2012. Official Gazette. Brasília (in Brazilian Portuguese).

  • Cahn, M. D., Bouldin, D. R., & Cravo, M. S. (1992). Nitrate sorption in the profile of an acid soil. Plant and Soil, 143(2), 179–183. https://doi.org/10.1007/BF00007871.

    Article  CAS  Google Scholar 

  • Collins, K. E., Doscher, C., Rennie, H. G., & Ross, J. G. (2013). The effectiveness of riparian “restoration” on water quality-a case study of lowland streams in Canterbury, New Zealand. Restoration Ecology, 21(1), 40–48. https://doi.org/10.1111/j.1526-100X.2011.00859.x.

    Article  Google Scholar 

  • Correll, D. L. (2005). Principles of planning and establishment of buffer zones. Ecological Engineering, 24(5 SPEC. ISS.), 433–439. https://doi.org/10.1016/j.ecoleng.2005.01.007.

  • de Paula, F. R., Gerhard, P., Ferraz, S. F. d. B., & Wenger, S. J. (2018). Multi-scale assessment of forest cover in an agricultural landscape of Southeastern Brazil: implications for management and conservation of stream habitat and water quality. Ecological Indicators, 85, 1181–1191. https://doi.org/10.1016/j.ecolind.2017.11.061.

    Article  CAS  Google Scholar 

  • Del Tánago, M. G., & De Jalón, D. G. (2006). Attributes for assessing the environmental quality of riparian zones. Limnetica, 25(1–2), 389–402.

    Google Scholar 

  • Ding, J., Jiang, Y., Liu, Q., Hou, Z., Liao, J., Fu, L., & Peng, Q. (2016). Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Science of the Total Environment, 551–552(19), 205–216. https://doi.org/10.1016/j.scitotenv.2016.01.162.

    Article  CAS  Google Scholar 

  • Donadio, N. M. M., Galbiatti, J. A., & de Paula, R. C. (2005). Qualidade da água de nascentes com diferentes usos do solo na bacia hidrográfica do córrego rico, São Paulo, Brasil. Engenharia Agrícola, 25, 115–125. https://doi.org/10.1590/s0100-69162005000100013.

    Article  Google Scholar 

  • Dorioz, J. M., Wang, D., Poulenard, J., & Trévisan, D. (2006). The effect of grass buffer strips on phosphorus dynamics-A critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2006.03.029.

  • Dou, M., Ma, X., Zhang, Y., Zhang, Y., & Shi, Y. (2019). Modeling the interaction of light and nutrients as factors driving lake eutrophication. Ecological Modelling, 400(100), 41–52. https://doi.org/10.1016/j.ecolmodel.2019.03.015.

    Article  CAS  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163–182. https://doi.org/10.1017/S1464793105006950.

    Article  Google Scholar 

  • Dwire, K. A., Mellmann-Brown, S., & Gurrieri, J. T. (2018). Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA. Climate Services, 10(September 2017), 44–52. https://doi.org/10.1016/j.cliser.2017.10.002.

    Article  Google Scholar 

  • Esteves, F. d. A. (1998). Fundamentos de Limnologia. Zeitschrift fur Naturforschung - Section C Journal of Biosciences (2nd ed.). Rio de Janeiro: Interciência.

    Google Scholar 

  • EU. European Union (2017). Decree-Law n.° 152, December 7. Establishes the quality of water for human consumption, with the objective of protecting human health from the harmful effects resulting from the eventual contamination of that water and ensuring the universal availability of healthy water, clean and balanced in its composition. European Union, Republic Diary, 1st series, n° 235, Portugal, 2017.

  • Feld, C. K., Fernandes, M. R., Ferreira, M. T., Hering, D., Ormerod, S. J., Venohr, M., & Gutiérrez-Cánovas, C. (2018). Evaluating riparian solutions to multiple stressor problems in river ecosystems — a conceptual study. Water Research, 139, 381–394. https://doi.org/10.1016/j.watres.2018.04.014.

    Article  CAS  Google Scholar 

  • Ferré-Huguet, N., Bosch, C., Lourencetti, C., Nadal, M., Schuhmacher, M., Grimalt, J. O., & Domingo, J. L. (2009). Human health risk assessment of environmental exposure to organochlorine compounds in the catalan stretch of the Ebro River, Spain. Bulletin of Environmental Contamination and Toxicology, 83(5), 662–667. https://doi.org/10.1007/s00128-009-9871-9.

    Article  CAS  Google Scholar 

  • Giri, S., & Qiu, Z. (2016). Understanding the relationship of land uses and water quality in twenty first century: a review. Journal of Environmental Management, 173, 41–48. https://doi.org/10.1016/j.jenvman.2016.02.029.

    Article  Google Scholar 

  • Groffman, P. M., Boulware, N. J., Zipperer, W. C., Pouyat, R. V., Band, L. E., & Colosimo, M. F. (2002). Soil nitrogen cycle processes in urban riparian zones. Environmental Science and Technology. https://doi.org/10.1021/es020649z.

  • Guibaud, G., & Gauthier, C. (2003). Study of aluminum concentration and speciation of surface water in four catchments in the Limousin region (France). Journal of Inorganic Biochemistry, 97(1), 16–25. https://doi.org/10.1016/S0162-0134(03)00254-X.

    Article  CAS  Google Scholar 

  • Hartemink, A. E., Veldkamp, T., & Bai, Z. (2008). Land cover change and soil fertility decline in tropical regions. Turkish Journal of Agriculture and Forestry, 32, 195–213.

    CAS  Google Scholar 

  • Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, A., Cardoso, A. C., et al. (2015). Managing aquatic ecosystems and water resources under multiple stress - an introduction to the MARS project. Science of the Total Environment, 503–504, 10–21. https://doi.org/10.1016/j.scitotenv.2014.06.106.

    Article  CAS  Google Scholar 

  • Hill, A. R., Devito, K. J., Campagnolo, S., & Sanmugadas, K. (2000). Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry. https://doi.org/10.1023/A:1006476514038.

  • Horwitz, R. J., Johnson, T. E., Overbeck, P. F., O’Donnell, T. K., Hession, W. C., & Sweeney, B. W. (2008). Effects of riparian vegetation and watershed urbanization on fishes in streams of the mid-Atlantic piedmont (USA). Journal of the American Water Resources Association. https://doi.org/10.1111/j.1752-1688.2008.00201.x.

  • Hosono, T., Ikawa, R., Shimada, J., Nakano, T., Saito, M., Onodera, S. I., et al. (2009). Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Science of the Total Environment, 407(9), 3189–3197. https://doi.org/10.1016/j.scitotenv.2008.04.014.

    Article  CAS  Google Scholar 

  • Huang, Z., Han, L., Zeng, L., Xiao, W., & Tian, Y. (2016). Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the three gorges reservoir area, China. Environmental Science and Pollution Research, 23(4), 3943–3955. https://doi.org/10.1007/s11356-015-5874-8.

    Article  CAS  Google Scholar 

  • Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123–140. https://doi.org/10.1038/nrmicro818.

    Article  CAS  Google Scholar 

  • Korzeniewska, E., Korzeniewska, A., & Harnisz, M. (2013). Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicology and Environmental Safety, 91, 96–102. https://doi.org/10.1016/j.ecoenv.2013.01.014.

    Article  CAS  Google Scholar 

  • Lambrakis, N. J. (1998). The impact of human activities in the Malia coastal area (Crete) on groundwater quality. Environmental Geology, 36(1–2), 87–92. https://doi.org/10.1007/s002540050323.

    Article  CAS  Google Scholar 

  • Larsen, M. C. (2017). Contemporary human uses of tropical forested watersheds and riparian corridors: Ecosystem services and hazard mitigation, with examples from Panama, Puerto Rico, and Venezuela. Quaternary International, 448, 190–200. https://doi.org/10.1016/j.quaint.2016.03.016.

    Article  Google Scholar 

  • Leite, G. F. M., Silva, F. T. C., Gonçalves, J. F. J., & Salles, P. (2015). Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia. https://doi.org/10.1007/s10750-015-2351-9.

  • Li, P., Wu, J., Qian, H., Lyu, X., & Liu, H. (2014). Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environmental Geochemistry and Health, 36(4), 693–712. https://doi.org/10.1007/s10653-013-9590-3.

    Article  CAS  Google Scholar 

  • Li, S., Song, W., Zhou, Y., Tang, Y., Gao, Y., & Miao, Z. (2015). Spread of extended-spectrum beta-lactamase-producing Escherichia coli from a swine farm to the receiving river. Environental Science and Pollution Research, 22, 13033–13037. https://doi.org/10.1007/s11356-015-4575-7.

    Article  CAS  Google Scholar 

  • Lovell, S. T., & Sullivan, W. C. (2006). Environmental benefits of conservation buffers in the United States: evidence, promise, and open questions. Agriculture, Ecosystems and Environment, 112(4), 249–260. https://doi.org/10.1016/j.agee.2005.08.002.

    Article  Google Scholar 

  • Luke, S. H., Barclay, H., Bidin, K., Chey, V. K., Ewers, R. M., Foster, W. A., et al. (2017). The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology, 10(4), 1–14. https://doi.org/10.1002/eco.1827.

    Article  Google Scholar 

  • Marmontel, C. V. F., & Rodrigues, V. A. (2015). Parâmetros Indicativos para Qualidade da Água em Nascentes com Diferentes Coberturas de Terra e Conservação da Vegetação Ciliar Indicative Parameters for Water Quality in Water Springs with Different Land Cover and Conservation of Riparian Vegetation. Floresta e Ambiente, 22(2), 171–181. https://doi.org/10.1590/2179-8087.082014.

    Article  Google Scholar 

  • Marmontel, C. V. F., Lucas-Borja, M. E., Rodrigues, V. A., & Zema, D. A. (2018). Effects of land use and sampling distance on water quality in tropical headwater springs (Pimenta creek, São Paulo State, Brazil). Science of the Total Environment, 622–623, 690–701. https://doi.org/10.1016/j.scitotenv.2017.12.011.

    Article  CAS  Google Scholar 

  • Mello, K., Valente, R. A., Randhir, T. O., Santos, A. C. A., & Vettorazzi, C. A. (2018a). Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena, 167(April), 130–138. https://doi.org/10.1016/j.catena.2018.04.027.

    Article  CAS  Google Scholar 

  • Mello, K., Valente, R. A., Randhir, T. O., & Vettorazzi, C. A. (2018b). Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecological Indicators, 93(April), 1293–1301. https://doi.org/10.1016/j.ecolind.2018.06.030.

    Article  CAS  Google Scholar 

  • Mittermeier, R. A., Myers, N., Tliomsen, J. B., & Olivieri, S. (1998). Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conservation Biology, 12(3), 516–520. https://doi.org/10.1046/j.1523-1739.1998.012003516.x.

    Article  Google Scholar 

  • Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature. https://doi.org/10.1038/35002501.

  • Neill, C., Deegan, L. A., Thomas, S. M., Haupert, C. L., Krusche, A. V., Ballester, V. M., & Victoria, R. L. (2006). Deforestation alters the hydraulic and biogeochemical characteristics of small lowland Amazonian streams. Hydrological Processes. https://doi.org/10.1002/hyp.6216.

  • Nóbrega, R. L. B., Ziembowicz, T., Torres, G. N., Guzha, A. C., Amorim, R. S. S., Cardoso, D., et al. (2019). Ecosystem services of a functionally diverse riparian zone in the Amazon–Cerrado agricultural frontier. Global Ecology and Conservation, 21. https://doi.org/10.1016/j.gecco.2019.e00819.

  • Ou, Y., Wang, X., Wang, L., & Rousseau, A. N. (2016). Landscape influences on water quality in riparian buffer zone of drinking water source area, Northern China. Environmental Earth Sciences, 75(2), 1–13. https://doi.org/10.1007/s12665-015-4884-7.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007.

    Article  Google Scholar 

  • Peterjohn, W. T., & Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: observations on the role of riparian forest. Ecology. https://doi.org/10.2307/1939127.

  • Primavesi, A. M. (2006). Ecological soil management: agriculture in tropical regions (18th ed.). São Paulo: Nobel (in Brazilian Portuguese).

    Google Scholar 

  • Purushotham, D., Prakash, M. R., & Rao, A. N. (2011). Groundwater depletion and quality deterioration due to environmental impacts in Maheshwaram watershed of R.R. district, AP (India). Environmental Earth Sciences, 62(8), 1707–1721. https://doi.org/10.1007/s12665-010-0666-4.

    Article  CAS  Google Scholar 

  • Qin, B. Q., Gao, G., Zhu, G. W., Zhang, Y. L., Song, Y. Z., Tang, X. M., et al. (2013). Lake eutrophication and its ecosystem response. Chinese Science Bulletin, 58(9), 961–970. https://doi.org/10.1007/s11434-012-5560-x.

    Article  CAS  Google Scholar 

  • Ragosta, G., Evensen, C., Atwill, E. R., Walker, M., Ticktin, T., Asquith, A., & Tate, K. W. (2011). Risk factors for elevated Enterococcus concentrations in a rural tropical island watershed. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2011.02.017.

  • Randhir, T. O., & Ekness, P. (2013). Water quality change and habitat potential in riparian ecosystems. Ecohydrology and Hydrobiology, 13(3), 192–200. https://doi.org/10.1016/j.ecohyd.2013.09.001.

    Article  Google Scholar 

  • Rao, M. S., Krishan, G., Kumar, C. P., Purushothaman, P., & Kumar, S. (2017). Observing changes in groundwater resource using hydro-chemical and isotopic parameters: a case study from Bist Doab, Punjab. Environmental Earth Sciences, 76(4). https://doi.org/10.1007/s12665-017-6492-1.

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6), 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021.

    Article  Google Scholar 

  • Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martín-Benito, J. M. T., Hedo, J., & Lucas-Borja, M. E. (2018). Effects of land use and seasonality on stream water quality in a small tropical catchment: the headwater of Córrego Água Limpa, São Paulo (Brazil). Science of the Total Environment, 622–623, 1553–1561. https://doi.org/10.1016/j.scitotenv.2017.10.028.

    Article  CAS  Google Scholar 

  • Ruschel, A. R., Mantovani, M., dos Reis, M. S., & Nodari, R. O. (2009). Caracterização e dinâmica de duas fases sucessionais em floresta secundária da Mata Atlántica. Revista Arvore. https://doi.org/10.1590/s0100-67622009000100011.

  • Ryu, H., Han, J. K., Jung, J. W., Bae, B., & Nam, K. (2007). Human health risk assessment of explosives and heavy metals at a military gunnery range. Environmental Geochemistry and Health, 29(4), 259–269. https://doi.org/10.1007/s10653-007-9101-5.

    Article  CAS  Google Scholar 

  • Sarr, D. A. (2002). Riparian livestock exclosure research in the Western United States: a critique and some recommendations. Environmental Management, 30(4), 516–526. https://doi.org/10.1007/s00267-002-2608-8.

    Article  Google Scholar 

  • Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4322–4333. https://doi.org/10.1098/rspb.2012.1032.

    Article  CAS  Google Scholar 

  • Selvakumar, S., Ramkumar, K., Chandrasekar, N., Magesh, N. S., & Kaliraj, S. (2017). Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Applied Water Science, 7(1), 411–420. https://doi.org/10.1007/s13201-014-0256-9.

    Article  Google Scholar 

  • SIHS. Secretaria de Infraestrutura Hídrica e Saneamento. (2016). Plano de abastecimento de água da região metropolitana de salvador, santo amaro e saubara. Tome II. 2 (1) chap. 01, (in Brazilian Portuguese).

  • Silva, J. S. O., da Bustamante, M. M. C., Markewitz, D., Krusche, A. V., & Ferreira, L. G. (2011). Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry, 105(1), 75–88. https://doi.org/10.1007/s10533-010-9557-8.

    Article  CAS  Google Scholar 

  • Singh, S., & Mishra, A. (2014). Spatiotemporal analysis of the effects of forest covers on stream water quality in Western Ghats of peninsular India. Journal of Hydrology, 519(PA), 214–224. https://doi.org/10.1016/j.jhydrol.2014.07.009.

    Article  Google Scholar 

  • Siqueira, T., Lacerda, C. G. L. T., & Saito, V. S. (2015). How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica, 47(4), 509–516. https://doi.org/10.1111/btp.12224.

    Article  Google Scholar 

  • Sperling, M. V. (2005). Introduction to water quality and sewage treatment. Sanitary and Environmental Engineering Department (in Brazilian Portuguese).

  • Stutter, M. I., Langan, S. J., & Lumsdon, D. G. (2009). Vegetated buffer strips can lead to increased release of phosphorus to waters: a biogeochemical assessment of the mechanisms. Environmental Science and Technology. https://doi.org/10.1021/es8030193.

  • Su, W. C., Ahern, J. F., & Chang, C. Y. (2016). Why should we pay attention to “inconsistent” land uses? A viewpoint on water quality. Landscape and Ecological Engineering, 12(2), 247–254. https://doi.org/10.1007/s11355-016-0293-7.

    Article  Google Scholar 

  • Sweeney, B. W., & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association, 50(3), 560–584. https://doi.org/10.1111/jawr.12203.

    Article  Google Scholar 

  • Syversen, N. (2002). Effect of a cold-climate buffer zone on minimising diffuse pollution from agriculture. In Water Science and Technology. https://doi.org/10.2166/wst.2002.0207.

  • Tanaka, M. O., de Souza, A. L. T., Moschini, L. E., & de Oliveira, A. K. (2016). Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agriculture, Ecosystems and Environment, 216, 333–339. https://doi.org/10.1016/j.agee.2015.10.016.

    Article  Google Scholar 

  • Taniwaki, R. H., Cassiano, C. C., Filoso, S., Ferraz, S. F. d. B., Camargo, P. B. d., & Martinelli, L. A. (2017). Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Science of the Total Environment, 584–585, 339–347. https://doi.org/10.1016/j.scitotenv.2016.12.150.

    Article  CAS  Google Scholar 

  • Titilawo, Y., Obi, L., & Okoh, A. (2015). Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: implications for public health. Science of the Total Environment, 523, 82–94. https://doi.org/10.1016/j.scitotenv.2015.03.095.

    Article  CAS  Google Scholar 

  • Uriarte, M., Yackulic, C. B., Lim, Y., & Arce-Nazario, J. A. (2011). Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landscape Ecology, 26(8), 1151–1164. https://doi.org/10.1007/s10980-011-9642-y.

    Article  Google Scholar 

  • USEPA. United States Environmental Protection Agency. (2003). Guidelines establishing test procedures for the analysis of pollutants; analytical methods for biological pollutants in ambient water (pp. 43272–43283). DC: Washington.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency. (2018). Edition of the drinking water standards and health advisories (pp. 1–22). DC: Washington.

    Google Scholar 

  • Van Bussel, C. G. J., Schroeder, J. P., Wuertz, S., & Schulz, C. (2012). The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquaculture. https://doi.org/10.1016/j.aquaculture.2011.11.019.

  • Varol, S., & Davraz, A. (2015). Evaluation of the groundwater quality with WQI (water quality index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences, 73(4), 1725–1744. https://doi.org/10.1007/s12665-014-3531-z.

    Article  CAS  Google Scholar 

  • Virães, M. V. (2013). Regionalization of flows in brazilian watersheds. (S. G. do B. CPRM, Ed.). Recife (in Brazilian Portuguese).

  • White, D., Lapworth, D. J., Stuart, M. E., & Williams, P. J. (2016). Hydrochemical profiles in urban groundwater systems: new insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. Science of the Total Environment, 562, 962–973. https://doi.org/10.1016/j.scitotenv.2016.04.054.

    Article  CAS  Google Scholar 

  • WHO. World Health Organisation. (2008). Guidelines for drinking-water quality (3th ed.). Geneva: WHO Press.

    Google Scholar 

  • WHO. World Health Organization. (2011). Guidelines for drinking-water quality. WHO Library (4th ed.).

  • Yamaguishi, R. B. (2013). Speciation of aluminum in groundwater on Billings dam area: applications of the ionizing radiation for digesting of water samples and proposal of remediation (pp. 01–195). São Paulo/SP: Universidade de São Paulo (in Brazilian Portuguese).

    Google Scholar 

  • Yang, Q., Wang, L., Ma, H., Yu, K., & Martín, J. D. (2016). Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environmental Pollution, 216, 340–349. https://doi.org/10.1016/j.envpol.2016.05.076.

    Article  CAS  Google Scholar 

  • Zhang, M., Geng, S., & Smallwood, K. S. (1998). Assessing groundwater nitrate contamination for resource and landscape management. Ambio, 27(3), 170–174. https://doi.org/10.2307/4314712.

    Article  Google Scholar 

Download references

Acknowledgments

The National Council for Scientific and Technological Development-CNPq–Brazil. The first author thanks the Foundation for the Support of Research of the State of Bahia-FAPESB, for the master’s scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginaldo da Silva Rangel Neto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rangel Neto, R., Luz, L.D. & Aguiar Junior, T.R. Springs’ Water Quality Assessment in Areas with Different Degrees of Forest Conservation: a Study in Tropical Climate Basins. Water Air Soil Pollut 231, 227 (2020). https://doi.org/10.1007/s11270-020-04564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04564-4

Keywords

Navigation