Skip to main content
Log in

Detection of Lead in River Water Samples Applying Cantilever Nanobiosensor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Contamination of water sources with lead has been a problem because it is a toxic heavy metal. Detection and monitoring are important for both the environment and human health. In this paper, we present an application of cantilever nanobiosensors that can detect contamination traces of lead (Pb) in real river water samples. The urease and alkaline phosphatase enzymes are used in the device as a biological element with high sensitivity in Pb detection. By change in deflection of the cantilever nanobiosensor in contact with the liquid solution (water), the response was the detection of trace amounts of Pb in water. When using ultrapure water (white), the nanobiosensors did not demonstrate voltage response. The detection limit was in femtograms per milliliter (parts per trillion) for phosphatase alkaline and urease nanobiosensors with good recovery results. The matrix effect was minimized with the dilution of river water in the ratio 1:1 with the working solution. The nanobiosensors demonstrated are efficient in the detection of the presence of Pb in real samples. Thus, the developed cantilever nanobiosensors showed suitability for heavy metal detection in water and could be a promising tool in the environmental area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addo, M. A., Affum, H. A., Botwe, B. O., Gbadago, J. K., Acquah, S. A., Senu, J. K., et al. (2012). Assessment of water quality and heavy metal levels in water and bottom sediment samples from Mokwé Lagoon, Accra , Ghana. Research Journal of Environmental and Earth Sciences, 4(2), 119–130.

    CAS  Google Scholar 

  • Andrade, M. A., Rodrigues, L. F., Ierich, J. C. M., Melendez, M. E., Carvalho, A. L., Carvalho, A. C., et al. (2020). A nanomechanical genosensor using functionalized cantilevers to detect the cancer biomarkers miRNA-203 and miRNA-205. IEEE Sensors Journal, 20(6), 2860–2867. https://doi.org/10.1109/JSEN.2019.2948506.

    Article  Google Scholar 

  • AOAC. (2011). Standard format and guidance for AOAC standard method performance requirement (SMPR) documents. Association of Official Analytical Chemists International. AOAC INTERNATIONAL, Gaithersburg, MD.

  • APHA – AMERICAN PUBLIC HEALTH ASSOCIATION. (1998). Standard methods for the examination of water and wastewater (20th ed.) Washington.

    Google Scholar 

  • Azhar, S. C., Aris, A. Z., Yusoff, M. K., Ramli, M. F., & Juahir, H. (2015). Classification of river water quality using multivariate analysis. Procedia Environmental Sciences, 30, 79–84. https://doi.org/10.1016/J.PROENV.2015.10.014.

    Article  CAS  Google Scholar 

  • Bagal-Kestwal, D., Karve, M. S., Kakade, B., & Pillai, V. K. (2008). Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosensors and Bioelectronics, 24(4), 657–664. https://doi.org/10.1016/j.bios.2008.06.027.

    Article  CAS  Google Scholar 

  • Bannon, D. I., & Chisolm, J. J. (2001). Anodic stripping voltammetry compared with graphite furnace atomic absorption spectrophotometry for blood lead analysis. Clinical Chemistry, 47(9), 1703–1704.

    Article  CAS  Google Scholar 

  • Benson, N. U., Adedapo, A. E., Fred-Ahmadu, O. H., Williams, A. B., Udosen, E. D., Ayejuyo, O. O., & Olajire, A. A. (2018). New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: a case study of the Gulf of Guinea. Regional Studies in Marine Science, 18, 44–56. https://doi.org/10.1016/j.rsma.2018.01.004.

    Article  Google Scholar 

  • Brasil. (2005). Resolução CONAMA N° 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed 5 Oct 2019.

  • Brasil. (2011). Portaria no2914 de 12 de dezembro de 2011. Ministério da Saúde. http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html. Accessed 05 Dec 2019.

  • Cezaro, A. C., Rigo, A. A., Martinazzo, J., Muenchen, D. K., Manzoli, A., Correa, D. S., Steffens, J., & Steffens, C. (2019). Cantilever nanobiosensor functionalized with tyrosinase for detection of estrone and β-estradiol in water. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03195-8.

  • Chen, X., Chen, W., Mulchandani, A., & Mohideen, U. (2012). Application of displacement principle for detecting heavy metal ions and EDTA using microcantilevers. Sensors and Actuators B: Chemical, 161(1), 203–208. https://doi.org/10.1016/J.SNB.2011.10.020.

    Article  CAS  Google Scholar 

  • Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N. L., et al. (1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 387(3), 235–244. https://doi.org/10.1016/S0003-2670(98)00725-9.

    Article  CAS  Google Scholar 

  • Creed, J., Martin, T., & O’Dell, J. (1994). Determination of trace elements by stabilized temperature graphite furnace atomic absorption. METHOD 200.9. Revision 2.2. EPA.

  • Cui, H., Xiong, X., Gao, B., Chen, Z., Luo, Y., He, F., et al. (2016). A novel impedimetric biosensor for detection of lead (II) with low-cost interdigitated electrodes made on PCB. Electroanalysis, 28(9), 2000–2006. https://doi.org/10.1002/elan.201501153.

    Article  CAS  Google Scholar 

  • Deshommes, E., Andrews, R. C., Gagnon, G., McCluskey, T., McIlwain, B., Doré, E., et al. (2016). Evaluation of exposure to lead from drinking water in large buildings. Water Research, 99, 46–55. https://doi.org/10.1016/J.WATRES.2016.04.050.

    Article  CAS  Google Scholar 

  • Gao, A., Tang, C.-X., He, X.-W., & Yin, X.-B. (2013). Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3(2+) intercalation and lead recognition. The Analyst, 138(1), 263–268. https://doi.org/10.1039/c2an36398d.

    Article  CAS  Google Scholar 

  • Gumpu, M. B., Krishnan, U. M., & Rayappan, J. B. B. (2017). Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix—a permeability approach. Analytical and Bioanalytical Chemistry, 409(17), 4257–4266. https://doi.org/10.1007/s00216-017-0376-9.

    Article  CAS  Google Scholar 

  • Halámek, J., Přibyl, J., Makower, A., Skládal, P., & Scheller, F. W. (2005). Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Analytical and Bioanalytical Chemistry, 382(8), 1904–1911. https://doi.org/10.1007/s00216-005-3260-y.

    Article  CAS  Google Scholar 

  • Hansen, K. M., & Thundat, T. (2005). Microcantilever biosensors. Methods, 37(1), 57–64. https://doi.org/10.1016/J.YMETH.2005.05.011.

    Article  CAS  Google Scholar 

  • He, Q., Miller, E. W., Wong, A. P., & Chang, C. J. (2006). A selective fluorescent sensor for detecting lead in living cells. Journal of the American Chemical Society, 128(29), 9316–9317. https://doi.org/10.1021/ja063029x.

    Article  CAS  Google Scholar 

  • Ipeaiyeda, A. R., & Ayoade, A. R. (2017). Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline. Applied Water Science. https://doi.org/10.1007/s13201-017-0590-9.

  • ISO 8288 (1986).  Water quality - determination of cobalt, nickel, copper, zinc, cadmium and lead - flame atomic absorption spectrometric methods. 1 Ed. p 11.

  • Kurbanoglu, S., Ozkan, S. A., & Merkoçi, A. (2017). Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosensors and Bioelectronics, 89, 886–898. https://doi.org/10.1016/J.BIOS.2016.09.102.

    Article  CAS  Google Scholar 

  • Lang, H. P., & Hegner, M. (2013). Springer handbook of nanotechnology. Choice Reviews Online, 42(02), 42-0968-42-0968. https://doi.org/10.5860/choice.42-0968.

    Article  Google Scholar 

  • Luzardo, F. H. M., Velasco, F. G., Correia, I. K. S., Silva, P. M. S., & Salay, L. C. (2017). Removal of lead ions from water using a resin of mimosa tannin and carbon nanotubes. Environmental Technology and Innovation, 7, 219–228. https://doi.org/10.1016/J.ETI.2017.03.002.

    Article  Google Scholar 

  • Maleki, N., Kashanian, S., Maleki, E., & Nazari, M. (2017). A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochemical Engineering Journal, 128, 1–11. https://doi.org/10.1016/J.BEJ.2017.09.005.

    Article  CAS  Google Scholar 

  • Martinazzo, J., Muenchen, D. K., Brezolin, A. N., Cezaro, A. M., Rigo, A. A., Manzoli, A., et al. (2018). Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. Journal of Environmental Science and Health, Part B, 53(4), 229–236. https://doi.org/10.1080/03601234.2017.1421833.

    Article  CAS  Google Scholar 

  • Muenchen, D. K., Martinazzo, J., de Cezaro, A. M., Rigo, A. A., Brezolin, A. N., Manzoli, A., et al. (2016). Pesticide detection in soil using biosensors and nanobiosensors. Biointerface Research in Applied Chemistry, 6(6), 1659–1675.

    CAS  Google Scholar 

  • Muenchen, D. K., Martinazzo, J., Brezolin, A. N., de Cezaro, A. M., Rigo, A. A., Mezarroba, M. N., et al. (2018). Cantilever functionalization using peroxidase extract of low cost for glyphosate detection. Applied Biochemistry and Biotechnology, 186(4), 1061–1073. https://doi.org/10.1007/s12010-018-2799-y.

    Article  CAS  Google Scholar 

  • Rigo, A. A., De Cezaro, A. M., Muenchen, D. K., Martinazzo, J., Manzoli, A., Steffens, J., & Steffens, C. (2019). Heavy metals detection in river water with cantilever nanobiosensor. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 1–11. https://doi.org/10.1080/03601234.2019.1685318.

  • Rotake, D., & Darji, A. D. (2018). Heavy metal ion detection in water using MEMS based sensor. Materials Today: Proceedings, 5(1), 1530–1536. https://doi.org/10.1016/j.matpr.2017.11.242.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4), 464–475. https://doi.org/10.1016/J.ENVSOFT.2006.02.001.

    Article  Google Scholar 

  • Silva, V. P. A., Paz, M. S. O., Cavalcante, R. M., & Nascimento, R. F. (2017). Strategy for correction of matrix effect on the determination of pesticides in water bodies using SPME-GC-FID. Article Journal of the Brazilian Chemical Society, 28, (6). https://doi.org/10.21577/0103-5053 20160264.

  • Smith, R. M. (2003). Before the injection—modern methods of sample preparation for separation techniques. Journal of Chromatography A, 1000(1–2), 3–27. https://doi.org/10.1016/S0021-9673(03)00511-9.

    Article  CAS  Google Scholar 

  • Steene, J. C., & Lambert, W. E. (2008). Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. Journal of the American Society for Mass Spectrometry, 19(5), 713–718. https://doi.org/10.1016/j.jasms.2008.01.013.

    Article  CAS  Google Scholar 

  • Steffens, C., Leite, F. L., Bueno, C. C., Manzoli, A., & Herrmann, P. S. P. (2012). Atomic force microscopy as a tool applied to nano/biosensors. Sensors, 12(6), 8278–8300. https://doi.org/10.3390/s120608278.

    Article  CAS  Google Scholar 

  • Steffens, C., Manzoli, A., Leite, F. L., Fatibello, O., & Herrmann, P. S. P. (2014a). Atomic force microscope microcantilevers used as sensors for monitoring humidity. Microelectronic Engineering, 113, 80–85. https://doi.org/10.1016/j.mee.2013.07.015.

    Article  CAS  Google Scholar 

  • Steffens, C., Leite, F. L., Manzoli, A., Sandoval, R. D., Fatibello, O., & Herrmann, P. S. P. (2014b). A microcantilever sensors coated with doped polyaniline for the detection of water vapor. Scanning, 36(3), 311–316. https://doi.org/10.1002/sca.21109.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (2008). Drinking water contaminants U.S. EPA, Office of Water. United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-10/documents/ace3_drinking_water.pdf. Accessed 8 Feb 2020.

  • Ullah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/J.TRAC.2018.01.002.

    Article  CAS  Google Scholar 

  • Verma, R., & Gupta, B. D. (2015). Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chemistry, 166, 568–575. https://doi.org/10.1016/J.FOODCHEM.2014.06.045.

    Article  CAS  Google Scholar 

  • Wang, D., Ge, C., Lv, K., Zou, Q., Liu, Q., Liu, L., et al. (2018). A simple lateral flow biosensor for rapid detection of lead(ii) ions based on G-quadruplex structure-switching. Chemical Communications (Cambridge, England), 54(97), 13718–13721. https://doi.org/10.1039/c8cc06810k.

    Article  CAS  Google Scholar 

  • World Health Organization. (2011). Lead in drinking-water. WHO guidelines for drinking-water quality. Switzerland: Geneva.

Download references

Acknowledgments

The authors would like to thank National Council for Scientific and Technological Development (CNPq), Brazilian Federal Agency for Support and Evaluation of Graduate Education (Capes) Financial code 001Research Support Foundation of the State of Rio Grande do Sul (FAPERGS), Studies and Projects Funding (Finep), and Regional Integrated University of Upper Uruguai and Missions - URI and Brazilian Company of Farming Research (Embrapa) for their financial and structure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice Steffens.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigo, A.A., de Cezaro, A.M., Martinazzo, J. et al. Detection of Lead in River Water Samples Applying Cantilever Nanobiosensor. Water Air Soil Pollut 231, 186 (2020). https://doi.org/10.1007/s11270-020-04562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04562-6

Keywords

Navigation