Skip to main content
Log in

Binding Mechanism Between Fulvic Acid and Heavy Metals: Integrated Interpretation of Binding Experiments, Fraction Characterizations, and Models

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, nine fulvic acid fractions (FAs) were obtained by a progressively extracting method from lake sediment and used as adsorbent for binding metal ions. The characterization indicated that former FA fractions had stronger polarity, more O-bearing functional groups, and less aliphaticity. And the results of EEM-PARAFAC indicated that there were four components in FAs, i.e., two humic-like components and two fulvic-like ones. The sorption experiments showed sorption capacity of selected metal ions onto FAs decreased with increasing extractions, and the analysis of binding stability for selected metal ions onto FAs were ranked as FAs-Cu>FAs-Pb>FAs-Cd. For all extracted FAs, the principal component analysis for sorption capacity showed that O-bearing functional groups and molecular weight were dominant factors for FAs binding metal ions. Furthermore, the characterization results of nine FAs pre- and post-adsorption indicated that the phenolic groups of FAs had a greater contribution to bind Pb2+ over than Cd2+ and Cu2+, while carboxyl and N-bearing groups had a stronger affinity for Cu2+ than others. The study has the potential significance to insight the FA and metal ions cycling processes in lakes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberts, J. J., & Takács, M. (2004). Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms. Organic Geochemistry, 35, 243–256.

    CAS  Google Scholar 

  • Bahram, M., Bro, R., Stedmon, C., & Afkhami, A. (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20, 99–105.

    CAS  Google Scholar 

  • Borůvka, L., & Drábek, O. (2004). Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant, Soil and Environment, 50, 339–345.

    Google Scholar 

  • Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38, 149–171.

    CAS  Google Scholar 

  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37, 5701–5710.

    CAS  Google Scholar 

  • Cory, R. M., & Mcknight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39, 8142–8149.

    CAS  Google Scholar 

  • Divya, O., Venkataraman, V., & Mishra, A. K. (2009). Analysis of metal ion concentration in humic acid by excitation-emission matrix fluorescence and chemometric methods. Journal of Applied Spectroscopy, 76, 864–875.

    CAS  Google Scholar 

  • Donisa, C., Mocanu, R., & Steinnes, E. (2003). Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma, 111, 75–84.

    CAS  Google Scholar 

  • Fakour, H., & Lin, T.-F. (2014). Experimental determination and modeling of arsenic complexation with humic and fulvic acids. Journal of Hazardous Materials, 279, 569–578.

    CAS  Google Scholar 

  • Fleury, G., Nero, M. D., & Barillon, R. (2017). Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: molecular-scale ESI-MS studies. Geochimica et Cosmochimica Acta, 196, 1–17.

    CAS  Google Scholar 

  • Gao, J., Liang, C., Shen, G., Lv, J., & Wu, H. (2017). Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere, 176, 108–116.

    CAS  Google Scholar 

  • Gao, J., Lv, J., Wu, H., Dai, Y., & Nasir, M. (2018). Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium-contaminated soils: insights from fluorescence spectroscopy and environmental implications. Chemosphere, 193, 1027.

    CAS  Google Scholar 

  • Ghosh, R., & Banerjee, D. K. (1997). Complexation of trace metals with humic acids from soil, sediment and sewage. Chemical Speciation & Bioavailability, 9, 15–19.

    CAS  Google Scholar 

  • Guo, X. J., Yuan, D. H., Li, Q., Jiang, J. Y., Chen, F. X., & Zhang, H. (2012). Spectroscopic techniques for quantitative characterization of Cu (II) and Hg (II) complexation by dissolved organic matter from lake sediment in arid and semi-arid region. Ecotoxicology and Environmental Safety, 85, 144.

    CAS  Google Scholar 

  • Hanc, A., Szakova, J., & Ochecova, P. (2014). Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons. Bioresource Technology, 168, 204–213.

    CAS  Google Scholar 

  • He, X.-S., Xi, B.-D., Pan, H.-W., Li, X., Li, D., Cui, D.-Y., Tang, W.-B., & Yuan, Y. (2014). Characterizing the heavy metal-complexing potential of fluorescent water-extractable organic matter from composted municipal solid wastes using fluorescence excitation–emission matrix spectra coupled with parallel factor analysis. Environmental Science and Pollution Research, 21, 7973–7984.

    CAS  Google Scholar 

  • He, X. S., Xi, B. D., Gao, R. T., Zhang, H., Dang, Q. L., Li, D., & Huang, C. H. (2016). Insight into the composition and degradation potential of dissolved organic matter with different hydrophobicity in landfill leachates. Chemosphere, 144, 75–80.

    CAS  Google Scholar 

  • Huang, G., Dong, W., Ma, S., Chen, J., Ling, J., & Wang, P. (2015). A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). Journal of Colloid and Interface Science, 445, 294–302.

    CAS  Google Scholar 

  • Igwe, J. C., & Abia, A. A. (2006). A bioseparation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology, 5, 1167–1179.

    CAS  Google Scholar 

  • Jamieson, T., Sager, E., & Guéguen, C. (2014). Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere, 103, 197–204.

    CAS  Google Scholar 

  • Jin, J., Sun, K., Wang, Z., Yang, Y., Han, L., & Xing, B. (2017). Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions. Environmental Science & Technology, 51, 2635.

    CAS  Google Scholar 

  • Kang, S., & Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 39, 134–140.

    CAS  Google Scholar 

  • Kulikowska, D., Gusiatin, Z. M., Bułkowska, K., & Klik, B. (2015). Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. Journal of Hazardous Materials, 300, 882–891.

    CAS  Google Scholar 

  • Li, W., Zhang, F., Ye, Q., Wu, D., Wang, L., Yu, Y., Deng, B., & Du, J. (2017). Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China. Chemosphere, 172, 496–504.

    CAS  Google Scholar 

  • Lian-Gang, M. A. (2011). Review on extraction and fractionation of humic substances from soils. Bulletin of Mineralogy, Petrology and Geochemistry, 30, 465–471.

    Google Scholar 

  • Lin, H., Xia, X., Bi, S., Jiang, X., Wang, H., Zhai, Y., & Wen, W. (2017). Quantifying bioavailability of pyrene associated with dissolved organic matter of various molecular weights to Daphnia magna. Environmental Science & Technology, 52, 644.

    Google Scholar 

  • Liu, W., Xu, N., Wang, T., Xiong, L., & Ni, J. (2013). Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), cd(II) and Cr(III) onto titanate nanotubes. Chemical Engineering Journal, 215, 366–374.

    Google Scholar 

  • Lukman, S., Saito, T., Aoyagi, N., Kimura, T., & Nagasaki, S. (2012). Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC). Geochimica et Cosmochimica Acta, 88, 199–215.

    CAS  Google Scholar 

  • Meena, A. K., Kadirvelu, K., Mishraa, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Journal of Hazardous Materials, 150, 619–625.

    CAS  Google Scholar 

  • Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2011). Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environmental Chemistry Letters, 9, 169–176.

    CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108, 40–58.

    CAS  Google Scholar 

  • Plaza, C., Brunetti, G., Senesi, N., & Polo, A. (2006a). Fluorescence characterization of metal ion-humic acid interactions in soils amended with composted municipal solid wastes. Analytical and Bioanalytical Chemistry, 386, 2133–2140.

    CAS  Google Scholar 

  • Plaza, C., Brunetti, G., Senesi, N., & Polo, A. (2006b). Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environmental Science & Technology, 40, 917–923.

    CAS  Google Scholar 

  • Provenzano, M. R., D'Orazio, V., Jerzykiewicz, M., & Senesi, N. (2004). Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Chemosphere, 55, 885.

    CAS  Google Scholar 

  • Rodríguez, F. J., Schlenger, P., & Garcíavalverde, M. (2016). Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques. Sci. Total Environ., 541, 623.

    Google Scholar 

  • Rodriguez, F. J., Schlenger, P., & García-Valverde, M. (2014). A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: Structural characterization of humic substances. Sci. Total Environ., 476-477, 718.

    CAS  Google Scholar 

  • Schnitzer, M., & Gupta, U. C. (1965). Determination of acidity in soil organic matter. Soil Science Society of America Journal, 29, 274.

  • Serrano, O. R. (1995). Fate, transport, and interactions of heavy metals. Environmental Health Perspectives, 103(Suppl), 1–7.

  • Shi, W., Fang, X., Wu, X., Zhang, G., Que, W., & Li, F. (2018). Alteration of bioaccumulation mechanisms of Cu by microalgae in the presence of natural fulvic acids. Chemosphere, 211, 717–725.

    CAS  Google Scholar 

  • Shi, Z., Wang, P., Peng, L., Lin, Z. & Z, D.: 2016, 'Kinetics of heavy metal dissociation from natural organic matter: roles of the carboxylic and phenolic sites', Environmental Science & Technology 50.

  • Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6, 572–579.

    CAS  Google Scholar 

  • Stedmon, C. A., & Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50, 686–697.

    CAS  Google Scholar 

  • Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S., & Kuosa, H. (2007). Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Environmental Science & Technology, 41, 7273.

    CAS  Google Scholar 

  • Tadini, A. M., Nicolodelli, G., Mounier, S., Montes, C. R., & Milori, D. M. B. P. (2015). The importance of humin in soil characterisation: a study on Amazonian soils using different fluorescence techniques. Sci. Total Environ., 537, 152–158.

    CAS  Google Scholar 

  • Tan, W., Xi, B., Wang, G., Jiang, J., He, X., Mao, X., Gao, R., Huang, C., Zhang, H., & Li, D. (2017). Increased Electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature. Environmental Science & Technology, 51, 3176–3186.

    CAS  Google Scholar 

  • Tan, W., Xiong, J., Li, Y., Wang, M., Weng, L., & Koopal, L. K. (2013). Proton binding to soil humic and fulvic acids: experiments and NICA-Donnan modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 1152–1158.

    CAS  Google Scholar 

  • Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R. F., Levine, L., Roberts, M., Hummerick, M., & Bauer, J. (2006). Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Separation and Purification Technology, 51, 40–47.

    CAS  Google Scholar 

  • Tatzber, M., Stemmer, M., Splegel, H., Katziberger, C., Haberhauer, G., Mentler, A., & Gerzabek, M. H. (2010). 'FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures', journal of plant nutrition and soil science =. Zeitschrift fuer Pflanzenernaehrung und Bodenkunde, 170, 522–529.

    Google Scholar 

  • Uwamariya, V., Petrusevski, B., Slokar, Y. M., & Aubry, C. (2015). Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by Iron oxide-based adsorbents. Water, Air, & Soil Pollution, 226, 1–12.

    CAS  Google Scholar 

  • Wan, Y. & Wang, Q.: 2012, 'Study on adsorption-desorption characteristics of Dibutyl-phthalate on humic acid', southwestern university.

  • Wen, B., Zhang, J. J., Zhang, S. Z., Shan, X. Q., Khan, S. U., & Xing, B. (2007). Phenanthrene sorption to soil humic acid and different humin fractions. Environmental Science & Technology, 41, 3165–3171.

    CAS  Google Scholar 

  • Wu, J., Zhang, H., Shao, L. M., & He, P. J. (2012a). Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate. Environmental Pollution, 162, 63–71.

    CAS  Google Scholar 

  • Wu, J., Zhang, H., Yao, Q. S., Shao, L. M., & He, P. J. (2012b). Toward understanding the role of individual fluorescent components in DOM-metal binding. Journal of Hazardous Materials, 215-216, 294–301.

    CAS  Google Scholar 

  • Xing, B., & Pignatello, J. J. (1997). Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environmental Science & Technology, 31, 792–799.

    CAS  Google Scholar 

  • Xiong, J., Koopal, L. K., Tan, W. F., Fang, L. C., Wang, M. X., Zhao, W., Liu, F., Zhang, J., & Weng, L. P. (2013). Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environmental Science & Technology, 47, 11634–11642.

    CAS  Google Scholar 

  • Yamashita, Y., & Jaffé, R. (2008). Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology, 42, 7374.

    CAS  Google Scholar 

  • Yang, K., Miao, G., Wu, W., Lin, D., Bo, P., Wu, F., & Xing, B. (2015). Sorption of Cu 2+ on humic acids sequentially extracted from a sediment. Chemosphere, 138, 657–663.

    CAS  Google Scholar 

  • Zhang, S., Wen, J., Hu, Y., Fang, Y., Zhang, H., Xing, L., Wang, Y., & Zeng, G. (2019). Humic substances from green waste compost: an effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. Journal of Hazardous Materials, 366, 210–218.

    CAS  Google Scholar 

  • Zhao, X., He, X., Xi, B., Gao, R., Tan, W., Zhang, H., Huang, C., Li, D., & Li, M. (2017a). Response of humic-reducing microorganisms to the redox properties of humic substance during composting. Waste Management, 70.

  • Zhao, Y., Wei, Y., Zhang, Y., Wen, X., Xi, B., Zhao, X., Zhang, X., & Wei, Z. (2017b). Roles of composts in soil based on the assessment of humification degree of fulvic acids. Ecological Indicators, 72, 473–480.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41163006, 41763014, 41003049), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2015MS0407), and the Natural Science Foundation of Tianjin, China (16JCYBJC43700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changwei Lü or Jiang He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Former FA fractions had stronger polarity and more O-bearing functional groups.

2. EEM-PARAFAC was employed to character FAs.

3. O-bearing functional groups and molecular weight were dominant factors for FAs binding metal ions.

4. N-bearing groups of FAs had a stronger affinity for Cu2+ than Pb2+ and Cd2+.

Electronic Supplementary Material

ESM 1

(DOCX 6475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shi, W., Ma, H. et al. Binding Mechanism Between Fulvic Acid and Heavy Metals: Integrated Interpretation of Binding Experiments, Fraction Characterizations, and Models. Water Air Soil Pollut 231, 184 (2020). https://doi.org/10.1007/s11270-020-04558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04558-2

Keywords

Navigation