Skip to main content
Log in

Ionic Liquids as Green Solvents for Reactive Separation of Glutaric Acid from Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, ionic liquids as green solvents have been received great attention owing to their remarkable properties. In this context, in the present study, the separation of glutaric acid from water was examined using green solvents instead of conventional organic solvents. As green solvents, four different types of imidazolium-based ionic liquids were utilized. Tributyl phosphate (TBP) was used as an extractant in ionic liquids. The effects of various factors like initial acid concentration (0.156–0.749 mol. L−1), TBP concentration in ionic liquids (0–3 mol. L−1), and type of ionic liquid were investigated. To evaluate the separation efficiency of glutaric acid from water, various parameters like extraction efficiencies (E), distribution coefficients (D), and loading factors (Z) were calculated. The values of these parameters changed in range of D (0.03–3.54), E (0.51–77.98%), and Z (0.040–0.177). The maximum D value of 3.54 and E value of 77.98% was obtained for reactive extraction of glutaric acid by using 3 mol. L−1 TBP in [BMIM][Tf2N] and 0.156 mol. L−1 initial glutaric acid concentration. Consequently, it was found that 77.98% of glutaric acid was separated from water at optimal conditions. This result indicated that imidazolium-based ionic liquids can be used for the reactive separation of glutaric acid from the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aşçı, Y. S., & İnci, İ. (2010). Extraction equilibria of acrylic acid from aqueous solutions by Amberlite LA-2 in various diluents. Journal of Chemical & Engineering Data, 55(7), 2385–2389.

  • Athankar, K., Wasewar, K., Varma, M., & Shende, D. (2017). Recovery of glutaric acid using tri-n-butyl phosphate: Effect of diluents and temperature. Chemical Engineering & Process Technology Journal, 8(2), 1–5.

    Article  Google Scholar 

  • Ayan, E., Baylan, N., & Çehreli, S. (2020). Optimization of reactive extraction of propionic acid with ionic liquids using central composite design. Chemical Engineering Research and Design, 153, 666–676.

    Article  CAS  Google Scholar 

  • Balasubramani, K., Sivarajasekar, N., & Naushad, M. (2020). Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. Journal of Molecular Liquids, 301, 112426.

    Article  CAS  Google Scholar 

  • Bayazit, S. Ş., İnci, İ., & Uslu, H. (2009). Adsorption of glutaric acid and glyoxylic acid onto weakly basic ion-exchange resin: Equilibrium and kinetics. Journal of Chemical & Engineering Data, 55(2), 679–684.

    Article  Google Scholar 

  • Canari, R., & Eyal, A. M. (2003a). Effect of pH on dicarboxylic acids extraction by amine-based extractants. Industrial & Engineering Chemistry Research, 42(7), 1293–1300.

    Article  CAS  Google Scholar 

  • Canari, R., & Eyal, A. M. (2003b). Selectivity in the extraction of lactic, malic, glutaric, and maleic acids from their binary solutions using an amine-based extractant: Effect of pH. Industrial & Engineering Chemistry Research, 42(7), 1308–1314.

    Article  CAS  Google Scholar 

  • Diaconu, I., Serban, E. A., Badea, G. I., & Ruse, E. (2019). Transport of indole 3-acetic acid through bulk liquid membrane influence of carrier in the diffusion process. Revista Dechimie, 70(8), 2716–2719.

    CAS  Google Scholar 

  • Djas, M., & Henczka, M. (2018). Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A review. Separation and Purification Technology, 201, 106–119.

    Article  CAS  Google Scholar 

  • Eda, S., Borra, A., Parthasarathy, R., Bankupalli, S., Bhargava, S., & Thella, P. K. (2018). Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: Equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach. Separation and Purification Technology, 197, 314–324.

    Article  CAS  Google Scholar 

  • Faisal, A. A., Al-Wakel, S. F., Assi, H. A., Naji, L. A., & Naushad, M. (2020). Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. Journal of Water Process Engineering, 33, 101112.

    Article  Google Scholar 

  • Fredlake, C. P., Crosthwaite, J. M., Hert, D. G., Aki, S. N., & Brennecke, J. F. (2004). Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical & Engineering Data, 49(4), 954–964.

    Article  CAS  Google Scholar 

  • Ghandi, K. (2014). A review of ionic liquids, their limits and applications. Green and Sustainable Chemistry, 4(1), 44–53.

    Article  CAS  Google Scholar 

  • Gök, A. (2019). Experimental design of reactive extraction of levulinic acid using green solvents. Süleyman Demirel University Journal of Natural and Applied Sciences, 23(3), 878–884.

    Google Scholar 

  • Gök, A. (2020). Enhanced adsorption of nicotinic acid by different types of Mg/Al layered double hydroxides: Synthesis, equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology. https://doi.org/10.1080/01932691.2020.1729795.

  • Han, Y.-H., Park, Y.-L., Yang, S.-Y., Jung, H.-R., Joo, J. C., Song, B.-K., et al. (2020). Selective extraction of glutaric acid from biological production systems using n-butanol. Journal of Industrial and Engineering Chemistry, 82, 98–104.

    Article  CAS  Google Scholar 

  • İnci, İ. (2007). Linear solvation energy relationship modeling and kinetic studies on reactive extraction of succinic acid by tridodecylamine dissolved in MIBK. Biotechnology Progress, 23(5), 1171–1179.

    Google Scholar 

  • Isosaari, P., Srivastava, V., & Sillanpää, M. (2019). Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Science of the Total Environment, 690, 604–619.

    Article  CAS  Google Scholar 

  • Kang, S., & Xing, B. (2007). Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Langmuir, 23(13), 7024–7031.

    Article  CAS  Google Scholar 

  • Kar, A., Bagde, A., Athankar, K. K., Wasewar, K. L., & Shende, D. Z. (2017). Reactive extraction of acrylic acid with tri-n-butyl phosphate in natural oils. Journal of Chemical Technology & Biotechnology, 92(11), 2825–2834.

    Article  CAS  Google Scholar 

  • Keshav, A., Wasewar, K. L., & Chand, S. (2009). Recovery of propionic acid from an aqueous stream by reactive extraction: Effect of diluents. Desalination, 244(1–3), 12–23.

    Article  CAS  Google Scholar 

  • Kim, H. T., Khang, T. U., Baritugo, K.-A., Hyun, S. M., Kang, K. H., Jung, S. H., et al. (2019). Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 51, 99–109.

    Article  CAS  Google Scholar 

  • Koók, L., Nemestóthy, N., Bakonyi, P., Göllei, A., Rózsenberszki, T., Takács, P., et al. (2017). On the efficiency of dual-chamber biocatalytic electrochemical cells applying membrane separators prepared with imidazolium-type ionic liquids containing [NTf2] and [PF6] anions. Chemical Engineering Journal, 324, 296–302.

    Article  Google Scholar 

  • Koók, L., Kaufer, B., Bakonyi, P., Rózsenberszki, T., Rivera, I., Buitrón, G., et al. (2019). Supported ionic liquid membrane based on [bmim][PF6] can be a promising separator to replace Nafion in microbial fuel cells and improve energy recovery: A comparative process evaluation. Journal of Membrane Science, 570, 215–225.

    Article  Google Scholar 

  • Kumar, S., & Babu, B. (2008) Separation of carboxylic acids from waste water via reactive extraction. In International Convention on Water Resources Development and Management (ICWRDM), Pilani, India.

  • Lee, C. Y. C., & Hines, A. L. (1987). Adsorption of glutaric, adipic, and pimelic acids on activated carbon. Journal of Chemical and Engineering Data, 32(4), 395–397.

    Article  CAS  Google Scholar 

  • Li, Z., Qin, W., & Dai, Y. (2002). Liquid−liquid equilibria of acetic, propionic, butyric, and valeric acids with trioctylamine as extractant. Journal of Chemical & Engineering Data, 47(4), 843–848.

    Article  Google Scholar 

  • Marsh, K. N., Deev, A., Wu, A. C., Tran, E., & Klamt, A. (2002). Room temperature ionic liquids as replacements for conventional solvents–a review. Korean Journal of Chemical Engineering, 19(3), 357–362.

    Article  CAS  Google Scholar 

  • Mironyuk, I., Tatarchuk, T., Naushad, M., Vasylyeva, H., & Mykytyn, I. (2019). Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. Journal of Molecular Liquids, 285, 742–753.

    Article  CAS  Google Scholar 

  • Naushad, M., Mittal, A., Rathore, M., & Gupta, V. (2015). Ion-exchange kinetic studies for cd (II), Co (II), Cu (II), and Pb (II) metal ions over a composite cation exchanger. Desalination and Water Treatment, 54, 2883–2890.

    Article  CAS  Google Scholar 

  • Naushad, M., Sharma, G., & Alothman, Z. A. (2019). Photodegradation of toxic dye using gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel. Journal of Cleaner Production, 241, 118263.

    Article  CAS  Google Scholar 

  • Pehlivanoǧlu, N., Uslu, H., & Kırbaşlar, Ş. İ. (2009). Experimental and modeling studies on the extraction of glutaric acid by trioctylamine. Journal of Chemical & Engineering Data, 54(12), 3202–3207.

    Article  Google Scholar 

  • Pehlİvanoğlu, N., Uslu, H., & Kırbaşlar, Ş. İ. (2010). Extractive separation of glutaric acid by Aliquat 336 in different solvents. Journal of Chemical & Engineering Data, 55(9), 2970–2973.

    Article  Google Scholar 

  • Riveiro, E., González, B. & Domínguez, Á. (2020). Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents. Separation and Purification Technology, 116692.

  • Rodríguez, M., Luque, S., Alvarez, J., & Coca, J. (1996). Extractive ultrafiltration for the removal of valeric acid. Journal of Membrane Science, 120(1), 35–43.

    Article  Google Scholar 

  • Rohles, C. M., Gläser, L., Kohlstedt, M., Gießelmann, G., Pearson, S., del Campo, A., et al. (2018). A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6, 5 using metabolically engineered Corynebacterium glutamicum. Green Chemistry, 20(20), 4662–4674.

    Article  CAS  Google Scholar 

  • Ruiz, M. O., Cabezas, J. L., Escudero, I., & Coca, J. (2005). Valeric acid extraction with tri-N-butyl phosphate impregnated in a macroporous resin. I. Equilibrium and Mass Transfer Rates. Separation Science and Technology, 39(1), 77–95.

    Article  Google Scholar 

  • Sprakel, L., & Schuur, B. (2019). Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Separation and Purification Technology, 211, 935–957.

    Article  CAS  Google Scholar 

  • Uslu, H., & İnci, İ. (2007). (liquid+ liquid) equilibria of the (water+ propionic acid+ Aliquat 336+ organic solvents) at T= 298.15 K. The Journal of Chemical Thermodynamics, 39(5), 804–809.

    Article  CAS  Google Scholar 

  • Uslu, H., & Inci, I. (2009). A study on glutaric acid extraction by tridodecylamine: Equilibria and models. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 32(12), 1951–1957.

    Article  CAS  Google Scholar 

  • Wasewar, K. L., Shende, D., & Keshav, A. (2011). Reactive extraction of itaconic acid using tri-n-butyl phosphate and Aliquat 336 in sunflower oil as a non-toxic diluent. Journal of Chemical Technology & Biotechnology, 86(2), 319–323.

    Article  CAS  Google Scholar 

  • Yang, S.-Y., Choi, T.-R., Jung, H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., et al. (2019). Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme and Microbial Technology, 128, 72–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Baylan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baylan, N. Ionic Liquids as Green Solvents for Reactive Separation of Glutaric Acid from Water. Water Air Soil Pollut 231, 162 (2020). https://doi.org/10.1007/s11270-020-04549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04549-3

Keywords

Navigation