Skip to main content
Log in

Removal of Sulfamethoxazole in Aqueous Solutions by Iron-Based Advanced Oxidation Processes: Performances and Mechanisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sulfamethoxazole (SMX), a representative sulfonamide antibiotic, has been identified as a new kind of persistent pollutant with property of hard biodegradation and hydrolyzation. Conventional methods cannot remove it well. In this study, the performances and mechanisms for SMX degradation were examined by persulfate (PS) activation with nanoscale zero-valent iron (nZVI) at various conditions including dosages of nZVI and PS, pH value, and initial SMX concentration. Results showed that about 88.4% SMX (10 mg/L) was removed by nZVI/PS system (0.10 g/L nZVI, 1.0 mM PS) within 120 min compared to 63.1% by nZVI alone system under room temperature. Lower initial SMX concentration and higher PS concentration were beneficial to the degradation of SMX, while pH (from 3.11 to 9.33) and nZVI dosage (from 0.05 to 0.30 g/L) had little effect. Radical quenching experiment and electron spin resonance test demonstrated that the degradation of SMX was attributed to sulfate radicals (SO4·−) and hydroxyl radicals (·OH) produced in this system. SMX reduction reaction by nZVI in nZVI/PS process was proved by reductive-oxidative degradation experiment and HPLC test, and the reduction product could be oxidized by SO4·− and ∙OH to other products even to H2O and CO2. Further, probable removal mechanisms have also been proposed. This study manifests that nZVI/PS system is effective for SMX removal and may provide some ideas for understanding the transformation process of antibiotic in iron-based advanced oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arnold, S. M., Hickey, W. J., & Harris, R. F. (1995). Degradation of atrazine by Fenton’s reagent: condition optimization and product quantification. Environmental Science & Technology, 29, 2083–2089.

    Article  CAS  Google Scholar 

  • Chen, H., Luo, H. J., Lan, Y. C., Dong, T. T., Hu, B. J., & Wang, Y. P. (2011a). Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. Journal of Hazardous Materials, 192, 44–53.

    CAS  Google Scholar 

  • Chen, J. H., Qiu, X. Q., Fang, Z. Q., Yang, M., Pokeung, T., Gu, F. L., Cheng, W., & Lan, B. Y. (2012). Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chemical Engineering Journal, 181-182, 113–119.

    Article  CAS  Google Scholar 

  • Chen, L. W., Ma, J., Li, X. C., Zhang, J., Fang, J. Y., Guan, Y. H., & Xie, P. C. (2011b). Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environmental Science & Technology, 45, 3925–3930.

    Article  CAS  Google Scholar 

  • Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., & Zhou, S. (2014). Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. International journal of Environmental Science and Technology, 11, 881–890.

    Article  CAS  Google Scholar 

  • Deng, J. M., Dong, H. R., Zhang, C., Jiang, C., Cheng, Y. J., Hou, K. J., Zhang, L. H., & Fan, C. Z. (2018). Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Separation and Purification Technology, 202, 130–137.

    Article  CAS  Google Scholar 

  • Diao, Z. H., Xu, X. R., Jiang, D., Kong, L. J., Sun, Y. X., Hu, Y. X., Hao, Q. W., & Chen, H. (2016). Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions. Chemical Engineering Journal, 302, 213–222.

    Article  CAS  Google Scholar 

  • Dong, H. R., Deng, J. M., Xie, Y. K., Zhang, C., Jiang, Z., Cheng, Y. J., Hou, K. J., & Zeng, G. M. (2017a). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86.

    Article  CAS  Google Scholar 

  • Dong, H. R., He, Q., Zeng, G. M., Tang, L., Zhang, L. H., Xie, Y. K., Zeng, Y. L., & Zhao, F. (2017b). Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA. Chemical Engineering Journal, 316, 410–418.

    Article  CAS  Google Scholar 

  • Dong, H. R., Zhang, C., Hou, K. J., Cheng, Y. J., Deng, J. M., Jiang, C., Tang, L., & Zeng, G. M. (2017c). Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188, 188–196.

    Article  CAS  Google Scholar 

  • Fang, Z. Q., Chen, J. H., Qiu, X. H., Qiu, X. Q., Cheng, W., & Zhu, L. C. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination, 268, 60–67.

    Article  CAS  Google Scholar 

  • Ghauch, A., Ayoub, G., & Naim, S. (2013). Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chemical Engineering Journal, 228, 1168–1181.

    Article  CAS  Google Scholar 

  • Hussain, I., Li, M. Y., Zhang, Y. Q., Li, Y. C., Huang, S. B., Du, X. D., Liu, G. Q., Hayat, W., & Anwar, N. (2017). Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chemical Engineering Journal, 311, 163–172.

    Article  CAS  Google Scholar 

  • Hussain, I., Zhang, Y. Q., & Huang, S. B. (2013). Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Advances, 4, 3502–3511.

    Article  Google Scholar 

  • Ji, Y. F., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J. M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Science of the Total Environment, 472, 800–808.

    Article  CAS  Google Scholar 

  • Karim, S., Bae, S., Greenwood, D., Hanna, K., & Singhal, N. (2017). Degradation of 17α-ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Research, 125, 32–41.

    Article  CAS  Google Scholar 

  • Kim, C., Ahn, J. Y., Kim, T. Y., Shin, W. S., & Hwang, I. (2018). Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI. Environmental Science & Technology, 52, 3625–3633.

    Article  CAS  Google Scholar 

  • Li, A. L., Wu, Z. H., Wang, T. T., Hou, S. D., Huang, B. J., Kong, X. J., Li, X. C., Guan, Y. H., Qiu, R. L., & Fang, J. Y. (2018). Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater. Journal of Hazardous Materials, 357, 207–216.

  • Li, H. X., Wan, J. Q., Ma, Y. W., Yan, W., & Huang, M. Z. (2014). Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7. Chemical Engineering Journal, 237, 487–496.

    Article  CAS  Google Scholar 

  • Liang, C. J., Huang, C. F., Mohanty, N., & Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73, 1540–1543.

    Article  CAS  Google Scholar 

  • Lin, C. C., & Chen, Y. H. (2018). Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions. Separation and Purification Technology, 194, 388–395.

    Article  CAS  Google Scholar 

  • Magureanu, M., Piroi, D., Mandache, N. B., David, V., Medvedovici, A., Bradu, C., & Parvulescu, V. I. (2011). Degradation of antibiotics in water by non-thermal plasma treatment. Water Research, 45, 3407–3416.

    Article  CAS  Google Scholar 

  • Matzek, L. W., & Carter, K. E. (2016). Activated persulfate for organic chemical degradation: a review. Chemosphere, 151, 178–188.

    Article  CAS  Google Scholar 

  • Mohatt, J. L., Hu, L. H., Finneran, K. T., & Strathmann, T. J. (2011). Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions. Environmental Science & Technology, 45, 4793–4801.

    Article  CAS  Google Scholar 

  • Moon, B. H., Park, Y. B., & Park, K. H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination, 268, 249–252.

    Article  CAS  Google Scholar 

  • Oh, W. D., Dong, Z. L., & Lim, T. T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental, 194, 169–201.

    Article  CAS  Google Scholar 

  • Qi, C. D., Yu, G., Huang, J., Wang, B., Wang, Y. J., & Deng, S. B. (2018). Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. Chemical Engineering Journal, 353, 490–498.

  • Shimabuku, K. K., Kearns, J. P., Martinez, J. E., Mahoney, R. B., Moreno-Vasquez, L., & Summers, R. S. (2016). Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Research, 96, 236–245.

    Article  CAS  Google Scholar 

  • Tang, J., & Wang, J. (2018). Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chemical Engineering Journal, 351, 1085–1094.

    Article  CAS  Google Scholar 

  • Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., & Nurmi, J. T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science & Technology, 41, 1010–1015.

    Article  CAS  Google Scholar 

  • Wang, Q. L., Snyder, S., Kim, J., & Choi, H. (2009). Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: synthesis, characterization, and reactivity. Environmental Science & Technology, 43, 3292–3299.

    Article  CAS  Google Scholar 

  • Wang, S. L., & Zhou, N. (2016). Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrasonics Sonochemistry, 29, 156–162.

    Article  Google Scholar 

  • Wang, W. J., Xu, P., Chen, M., Zeng, G. M., Zhang, C., Zhou, C. Y., Yang, Y., Huang, D. L., Lai, C., & Cheng, M. (2018). Alkali metal assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustainable Chemistry & Engineering, 6, 15503–15516.

    Article  CAS  Google Scholar 

  • Wu, S. H., He, H. J., Xiang, L., Yang, C. P., Zeng, G. M., Wu, B., & He, S. Y.&Lu, L. (2018). Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms. Chemical Engineering Journal, 341, 126–136.

  • Xu, L. J., & Wang, J. L. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264.

    Article  CAS  Google Scholar 

  • Xue, W. J., Huang, D. L., Zeng, G. M., Wan, J., Cheng, M., Zhang, C., & Hu, C. J.&Li, J. (2018a). Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review. Chemosphere, 210, 1145–1156.

  • Xue, W. J., Huang, D. L., Zeng, G. M., Wan, J., Zhang, C., Xu, R., Cheng, M., & Deng, R. (2018b). Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. Journal of Hazardous Materials, 341, 381–389.

    Article  Google Scholar 

  • Yang, Y., Lu, X. L., Jiang, J., Ma, J., Liu, G. Q., Cao, Y., Liu, W. L., Li, J., Pang, S. Y., & Kong, X. J.&luo, C. W. (2017). Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. Water Research, 118, 196–207.

  • Zhang, S. H., Wu, M. F., Tang, T. T., Xing, Q. J., Peng, C. Q., Li, F., Liu, H., Luo, X. B., Zou, J. P., Min, X. B., & Luo, J. M. (2018). Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chemical Engineering Journal, 335, 945–953.

    Article  CAS  Google Scholar 

  • Zhao, D., Liao, X. Y., Yan, X. L., Huling, S. G., Chai, T. Y., & Tao, H. (2013). Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials, 254-255, 228–235.

    Article  CAS  Google Scholar 

  • Zhu, C. Y., Fang, G. D., Dionysiou, D. D., Liu, C., Gao, J., Qin, W. X., & Zhou, D. M. (2016). Efficient transformation of DDTs with persulfate activation by zero-valent Iron nanoparticles: a mechanistic study. Journal of Hazardous Materials, 316, 232–241.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Science and Technology Plan Project of Hunan Province (No. 2018SK2047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Xu, W., Liu, Y. et al. Removal of Sulfamethoxazole in Aqueous Solutions by Iron-Based Advanced Oxidation Processes: Performances and Mechanisms. Water Air Soil Pollut 231, 159 (2020). https://doi.org/10.1007/s11270-020-04534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04534-w

Keywords

Navigation