Skip to main content
Log in

Preparation and Oil Absorption Performance of Polyacrylonitrile Fiber Oil Absorption Material

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, waste polyacrylonitrile (PAN) fibers were used as raw material to obtain a hydrophobic felt-like flexible oil absorption material via immersion in 3-aminopropyltriethoxy silane coupling agent (KH-550) and low-temperature oxidation. Based on single-factor experiments, the optimal preparation process was determined: the KH-550 concentration was 0.05%, the immersion time was 50 min, and the oxidation temperature was 280 °C. The oil absorption material prepared under the optimal conditions could absorb 28.92 g g−1 of engine oil and owned a water contact angle of 142.2°. Subsequently, the morphology and structure of the oil absorption materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). Characterization results showed that the addition of KH-550 guaranteed the formability of the material, and its forming mechanism was analyzed. Furthermore, oil retention capacity test and reusability test show that the oil absorption material has an outstanding oil retention rate of 96.2% and excellent recycling performance, proving its potential ability to clean up oil spill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albaigés, J. (2014). The basics of oil spill cleanup. International Journal of Environmental Analytical Chemistry, 94, 1512–1514.

    Article  Google Scholar 

  • Atlas, R. M. (1995). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31, 178–182.

    Article  CAS  Google Scholar 

  • Bi, H., Huang, X., Wu, X., et al. (2014). Carbon microbelt aerogel prepared by waste paper: An efficient and recyclable sorbent for oils and organic solvents. Small, 10, 3544–3550.

    Article  CAS  Google Scholar 

  • Briga-Sa, A., Nascimento, D., Teixeira, N., et al. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155–160.

    Article  CAS  Google Scholar 

  • Buist, I., Potter, S., Nedwed, T., et al. (2011). Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology, 67, 3–23.

    Article  Google Scholar 

  • Cai, Y., Gao, D., Wei, Q., et al. (2011). Effects of ferric chloride on structure, surface morphology and combustion property of electrospun polyacrylonitrile composite nanofibers. Fibers and Polymers, 12(1), 145–150.

    Article  CAS  Google Scholar 

  • Chen, F. Z., Lu, Y., Liu, X., et al. (2017). Table salt as a template to prepare reusable porous PVDF–MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions. Advanced Functional Materials, 27, 1702926.

    Article  Google Scholar 

  • Cheng, L., Shaikh, A. R., Fang, L. F., et al. (2018). Fouling-resistant and self-cleaning aliphatic polyketone membrane for sustainable oil–water emulsion separation. ACS Applied Materials and Interfaces, 10(51), 44880–44889.

    Article  CAS  Google Scholar 

  • Feng, J., Nguyen, S. T., Fan, Z., et al. (2015). Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal, 270, 168–175.

    Article  CAS  Google Scholar 

  • Ge, J., Zhao, H. Y., Zhu, H. W., et al. (2016). Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Advanced Materials, 28, 10459–10490.

    Article  CAS  Google Scholar 

  • Gupta, S., & Tai, N. H. (2016). Carbon materials as oil sorbents: A review on the synthesis and performance. Journal of Materials Chemistry A, 4, 1550–1565.

    Article  CAS  Google Scholar 

  • Hayase, G., Kanamori, K., Fukuchi, M., et al. (2013). Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angewandte Chemie International Edition, 52(7), 1986–1989.

    Article  CAS  Google Scholar 

  • Ji, M., Wang, C., Bai, Y., et al. (2007). Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polymer Bulletin, 59, 527–536.

    Article  CAS  Google Scholar 

  • Joseph, P., & Tretsiakova-McNally, S. (2012). Combustion behaviours of chemically modified polyacrylonitrile polymers containing phosphorylamino groups. Polymer Degradation and Stability, 97, 2531–2535.

    Article  CAS  Google Scholar 

  • Karki, H. P., Kafle, L., & Kim, H. J. (2019). Modification of 3D polyacrylonitrile composite fiber for potential oil-water mixture separation. Separation and Purification Technology, 229, 115840.

    Article  CAS  Google Scholar 

  • Kleindienst, S., Seidel, M., Ziervogel, K., et al. (2015). Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences, 112(48), 14900–14905.

    Article  CAS  Google Scholar 

  • Liang, H. W., Guan, Q. F., Chen, L. F., et al. (2012). Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angewandte Chemie- Internation Edition, 51, 5101–5105.

    Article  CAS  Google Scholar 

  • Li, J., Chen, Y., Gao, J., et al. (2018a). Graphdiyne sponge for direct collection of oils from water. ACS Applied Materials and Interfaces, 11, 2591–2598.

    Article  CAS  Google Scholar 

  • Li, L., Zhang, J., & Wang, A. (2018b). Removal of organic pollutants from water using superwetting materials. The Chemical Record, 18, 118–136.

    Article  CAS  Google Scholar 

  • Li, P., Qiao, Y., Zhao, L., et al. (2015). Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Marine Pollution Bulletin, 93, 75–80.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, C., Guo, S., et al. (2019). Microwave treatment of pre-oxidized fibers for improving their structure and mechanical properties. Ceramics International, 45(1), 1379–1384.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, J., Tong, Y., et al. (2013). Microstructural evolution during oxidative ablation in air for polyacrylonitrile based carbon fibers with different graphite degrees. Surface and Interface Analysis, 45, 787–792.

    Article  CAS  Google Scholar 

  • Mulyadi, A., Zhang, Z., & Deng, Y. (2016). Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials and Interfaces, 8(4), 2732–2740.

    Article  CAS  Google Scholar 

  • Pan, Y. X., Shi, K., Peng, C., et al. (2014). Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Applied Materials & Interfaces, 6, 8651–8659.

    Article  CAS  Google Scholar 

  • Simitzis, J., Terlemesian, E., & Mladenov, I. (1995). Utilization of waste PAN fibers as adsorbents by chemical and thermal modification. European Polymer Journal, 31, 1261–1267.

    Article  CAS  Google Scholar 

  • Song, J. N., Wang, H. Y., Li, Z. W., et al. (2018). Large-scale blow spinning of carbon microfiber sponge as efficient and recyclable oil sorbent. Chemical Engineering Journal, 343, 638–644.

    Article  CAS  Google Scholar 

  • Suni, S., Kosunen, A. L., Hautala, M., et al. (2004). Use of a by-product of peat excavation, cotton grass fiber, as a sorbent for oil-spills. Marine Pollution Bulletin, 49, 916–921.

    Article  CAS  Google Scholar 

  • Wang, D., Silbaugh, T., Pfeffer, R., et al. (2010). Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technology, 203, 298–309.

    Article  CAS  Google Scholar 

  • Wang, J. T., Han, F. L., Liang, B., et al. (2017). Hydrothermal fabrication of robustly superhydrophobic cotton fibers for efficient separation of oil/water mixtures and oil-in-water emulsions. Journal of Industrial and Engineering Chemistry, 54, 174–183.

    Article  CAS  Google Scholar 

  • Wang, J. T., & Liu, S. Y. (2019). Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Separation and Purification Technology, 221, 303–310.

    Article  CAS  Google Scholar 

  • Wang, J. T., & Wang, A. Q. (2013). Acetylated modification of kapok Fiber and application for oil absorption. Fibers and Polymers, 14(11), 1834–1840.

    Article  CAS  Google Scholar 

  • Wang, Y. (2010). Fiber and textile waste utilization. Waste and Biomass Valorization, 1(1), 135–143.

    Article  Google Scholar 

  • Xu, Z., Wang, J., Li, H., et al. (2019). Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation. Chemical Engineering Journal, 370, 1181–1187.

    Article  CAS  Google Scholar 

  • You, S. Y., Park, Y. H., & Park, C. R. (2000). Preparation and properties of activated carbon fabric from acrylic fabric waste. Carbon, 38, 1453–1460.

    Article  CAS  Google Scholar 

  • Yuan, J., Gao, R., Wang, Y. Y., et al. (2018). A novel hydrophobic adsorbent of electrospun SiO 2 @MUF/PAN nanofibrous membrane and its adsorption behaviour for oil and organic solvents. Journal of Materials Science, 53, 16357–16370.

    Article  CAS  Google Scholar 

  • Yu, M., Wang, C., Bai, Y., et al. (2006). Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. Journal of Applied PolymerScience, 102, 5500–5506.

    Article  CAS  Google Scholar 

  • Zhang, L., Liu, L. S., & Qiu, G. X. (2013). Research progress of recycled use of waste textiles. Journal of Chemical Research, 3, 153–160.

    Google Scholar 

  • Zhang, R., Wu, Y., Zhang, H., et al. (2019). A facile strategy toward hydrophobic–oleophilic 3D Fe foam for efficient oil–water separation. Journal of Materials Science, 54(20), 13358–13367.

    Article  CAS  Google Scholar 

  • Zhu, H., Qiu, S., Jiang, W., et al. (2011). Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environmental Science and Technology, 45, 4527–4531.

    Article  CAS  Google Scholar 

  • Zhu, L., Wang, Y., Wang, Y., et al. (2017). An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous and Mesoporous Materials, 241, 285–292.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Scientific Research Fund of Taiyuan University of Technology for financial support (Project No. 20504020203) and Shanxi Provincial Foundation for Returned Scholars, China (Project No. 2017048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Wang, S., Bao, Z. et al. Preparation and Oil Absorption Performance of Polyacrylonitrile Fiber Oil Absorption Material. Water Air Soil Pollut 231, 153 (2020). https://doi.org/10.1007/s11270-020-04524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04524-y

Keywords

Navigation