Skip to main content
Log in

Efficiency of Nitrifying and Denitrifying Bacteria in Removing Micropollutants in Water Samples

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Several regions of the world have been suffering from problems of water quality degradation caused mainly by the input of nutrients such as nitrogen and phosphorus, resulting from anthropic activities. In excess, these nutrients can be considered micropollutants that could be responsible for the blooms of aquatic plant species, algae, and potentially toxic cyanobacteria, resulting in the interference of water quality in the socio-economic and environmental sector. Biological mitigation measures using specific microorganisms have been applied for the removal of micro pollutants due to their high efficiency of nitrogen and phosphorus. The present study analyzed the efficiency of nitrifying bacteria such as N. europaea and N. winodradskyi and P. denitrificans denitrifying bacteria, individually and as a bacterial pool (formed by N. europaea, N. winodradskyi, and P. denitrificans), in removing NH3, NO2, NO3, N, P, and PO43−, in pure water samples at times 0 to 1440 min and 0 to 7200 min. N. europaea and N. winodradskyi presented 100% removal efficiency for compounds NH3 and NO2 respectively, and bacterial pool removed 100% of compounds NO2 and P at time 1440 min (24 h). At time 7200 min (120 h), P. denitrificans obtained 100% removal of NO2 and NO3. Over time, the bacterial pool obtained 100% removal for all compounds analyzed in the present study. This paper demonstrated the excellent performance of microorganisms in the removal of nitrogen and phosphorus compounds in pure water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeliovich, A. (2006). The nitrite oxidizing bacteria. Dworkin M., Falkow S., Rosenberg E., Schleifer KH, Stackebrandt E. 861–872. (eds.) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_41.

  • Abeliovich, A., & Vonshak, A. (1992). Anaerobic metabolism of Nitrosomonas europaea. Arch Mlcrobiol, 158(4), 267–270. https://doi.org/10.1007/BF00245243.

    Article  CAS  Google Scholar 

  • Ahlgren, J., Reitzel, K., Danielsson, R., Gogoll, A., & Rydin, E. (2006). Biogenic phosphorus in oligotrophic mountain lake sediments: Differences in composition measured with NMR spectroscopy. Water Research, 40, 3705–3712. https://doi.org/10.1016/j.watres.2006.09.006.

    Article  CAS  Google Scholar 

  • Arp, D. J., Sayavedra-Soto, L. A., & Hommes, N. G. (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178(1), 250–255. https://doi.org/10.1007/s00203-002-0452-0.

    Article  CAS  Google Scholar 

  • Askin, B. S., & Ugurlu, A. (2004). The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor. Bioresource Technology, 94(1), 1–7. https://doi.org/10.1016/j.biortech.2003.11.022.

    Article  CAS  Google Scholar 

  • Barak, Y., & Van Rijn, J. (2000). Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Applied and Environmental Microbiology, 66(3), 1209–1212. https://doi.org/10.1128/aem.66.3.1209-1212.2000.

    Article  CAS  Google Scholar 

  • Baumann, B., Snozzi, M., Zehnder, A. J. B., & Van Der Meer, J. R. (1996). Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. Journal of Bacteriology, 178(15), 4367–4374. https://doi.org/10.1128/jb.178.15.4367-4374.1996.

    Article  CAS  Google Scholar 

  • Brazil. (2006). CONAMA Resolution 357, March 17, 2005. Provides for the classification of water bodies and environmental guidelines for their framing, as well as establishes the conditions and standards of discharge of effluents, and other measures. Official Gazette of the Federative Republic of Brazil, Brasilia.

  • Burford, M. A., Johson, S. A., Cook, A. J., Packer, T. V., Taylor, B. M., & Townsley, E. B. (2007). Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Research, 41(18), 4105–4114. https://doi.org/10.1016/j.watres.2007.05.053.

    Article  CAS  Google Scholar 

  • Carlson, C. A., & Ingraham, J. L. (1983). Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. American Society for Microbiology. Applied and Environmental Microbiology, 45(4), 1247–1253 http://doi: 0099-2240/83/041247-07$02.00/0.

    Article  CAS  Google Scholar 

  • Cervantes-Carrillo, F., Pérez, J., & Gómez, J. (2000). Avances en la Eliminación Biológica del Nitrógeno de las Aguas Residuales. Revista Latinoamericana de Microbiología, 42, 73–82.

    Google Scholar 

  • Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M., & Arp, D. (2003). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. American Society for Microbiology Journals. Journal of Bacteriology, 185(9), 2759–2773. https://doi.org/10.1128/JB.185.9.2759-2773.2003.

  • Chapman, B. D., Schleicher, M., Beuger, A., Gostomski, P., & Thiele, J. H. (2006). Improved methods for the cultivation of the chemolithoautotrophic bacterium Nitrosomonas euroapaea. Journal of Microbiological Methods, 65(1), 96–106. https://doi.org/10.1016/j.mimet.2005.06.013.

    Article  CAS  Google Scholar 

  • Cruvellier, N., Poughon, L., Creuly, C., Dussap, C., & Lasseur, C. (2016). Growth modelling of Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391: A new online indicator of the partial nitrification. Bioresource Technology, 220(1), 369–377. https://doi.org/10.1016/j.biortech.2016.08.090.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., & Thornbrugh, D. J. (2009). Eutrophication of U.S. freshwaters: Analysis of potential economic damages. Environmental Science & Technology, 43(1), 12–19. https://doi.org/10.1021/es801217q.

    Article  CAS  Google Scholar 

  • Dou, M. M., Zhang, X., Zhang, Y., & Shi, Y. (2019). Modeling the interaction of light and nutrients as factors driving lake eutrophication. Ecological Modelling, 400, 41–52. https://doi.org/10.1016/j.ecolmodel.2019.03.015.

    Article  CAS  Google Scholar 

  • Feng, W., Wu, W., He, Z., Song, F., Zhu, Y., Giesy, J. P., Wang, Y., Qin, N., Zhang, Z., Chen, H., & Sun, F. (2018). Simulated bioavailability of phosphorus from aquatic macrophytes and phytoplankton by aqueous suspension and incubation with alkaline phosphatase. Science of the Total Environment, 616-617, 1431–1439. https://doi.org/10.1016/j.scitotenv.2017.10.172.

    Article  CAS  Google Scholar 

  • Ferguson, S. J., Richardson, D. J., Spanning, R. J. M V. (2007). Biology of the nitrogen cycle. Biochemistry and Molecular Biology of Nitrification. Bothe, H., Ferguson, S. J., Newton, W. E (Eds). (Vol. 1, Cap. 14, pp 209–222). Amsterdam, Boston.

  • Galván, L. A., & Ríos, L. A. (2013). Procesos, bacterias y arqueobacterias involucrados en el ciclo biológico del nitrógeno para la eliminación de compuestos nitrogenados en ecosistemas de agua dulce, una revisión sistemática. Hechos Microbiol, 4(1), 34–51.

    Google Scholar 

  • Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223. https://doi.org/10.4319/lo.2000.45.6.1213.

    Article  CAS  Google Scholar 

  • Hartop, K. (2014). The impact of nitrite on aerobic growth of Paracoccus denitrificans PD1222 (doctoral dissertation) School of Biological Sciences. United Kingdom: University of East Anglia.

    Google Scholar 

  • He, X., Liu, Y., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., Lenhart, J. J., Mouser, P. J., Szlag, D., & Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174–193. https://doi.org/10.1016/j.hal.2016.01.001.

    Article  CAS  Google Scholar 

  • Hommes, N. G., Sayavedra-Soto, L. A., & Arp, D. J. (2003). Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. Journal of Bacteriology, 185(23), 6809–6814. https://doi.org/10.1128/JB.185.23.6809-6814.2003.

  • Hooper, A. B., Vannelli, T., Bergmann, D. J., & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek, 71(1), 59–67. https://doi.org/10.1023/A:1000133919203.

    Article  CAS  Google Scholar 

  • Inamori, Y., Wu, X., Mizuochi, M. (1997). N2O producing capability of Nitrosomonas europaea, Nitrobacter winogradskyi and Alcaligenes faecalis. War. Sci. Tech. Elsevier Science 36 (10) 65-72. https://PII: SO273-1223(97)00643-4.

  • Laanbroek, H. J., Bodelier, P. L. E., & Gerards, S. (1994). Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology, 161(2), 156–162. https://doi.org/10.1007/BF00276477.

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., Bär-Gilissen, M. J., & Hoogveld, H. L. (2002). Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea. Applied and Environmental Microbiology, 68(3), 1454–1457. https://doi.org/10.1128/aem.68.3.1454-1457.2002.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, X., Le, K., Lu, S., Guo, X., Zhang, J., & Xi, B. (2019). Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism. Science of the Total Environment, 652, 977–988. https://doi.org/10.1016/j.scitotenv.2018.10.313.

    Article  CAS  Google Scholar 

  • Mellbye, B. L., Giguere, A. T., Murthy, G. S., Bottomley, P. J., Sayavedra-Soto, L. A., & Chaplen, F. W. R. (2018). Genome-scale, constraint-based modeling of nitrogen oxide fluxes during coculture of Nitrosomonas europaea and Nitrobacter winogradskyi. American Society for Microbiology Journals, 3(3), 1–13. https://doi.org/10.1128/msystems.00170-17.

    Article  CAS  Google Scholar 

  • Ndlela, L. L., Oberholster, P. J., & Cheng, P. H. (2016). An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae, 60, 11–26. https://doi.org/10.1016/j.hal.2016.10.001.

    Article  CAS  Google Scholar 

  • Nsenga Kumwimba, M., Meng, F., Iseyemi, O., Moore, M. T., Bo, Z., Tao, W., Liang, T. J., & Ilunga, L. (2018). Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Science of the Total Environment, 639, 742–759. https://doi.org/10.1016/j.scitotenv.2018.05.184.

    Article  CAS  Google Scholar 

  • Poughon, L., Dussap, C., & Gros, J. (2001). Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnology and Bioengineering, 72(4), 416–433. https://doi.org/10.1002/1097-0290(20000220)72:4<416::AID-BIT1004>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  • Ribeiro, L. G. G., & Rolim, N. D. (2017). Planet water whom and for whom: An analysis of fresh water as a fundamental right and its valuation marketing. Revista Direito Ambiental e sociedade, 7(1), 7–33.

    Google Scholar 

  • Riistama, S., Puustinen, A., Verkhovsky, M. I., Morgan, J. E., & Wikstrom, M. (2000). Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans. Biochemistry, 39(21), 6365–6372. https://doi.org/10.1021/bi000123w.

    Article  CAS  Google Scholar 

  • Saggar, S., Jha, N., Deslippe, J., Bolan, N. S., Luo, J., Giltrap, D. L., Kim, D.-G., Zaman, M., & Tillman, R. W. (2013). Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment, 465, 173–195. https://doi.org/10.1016/j.scitotenv.2012.11.050.

    Article  CAS  Google Scholar 

  • Sayavedra-Soto, L., Ferrell, R., Dobie, M., Mellbye, B., Chaplen, F., Buchanan, A., Chang, J., Bottomley, P., & Arp, D. (2015). Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations. FEMS Microbiology Letters, 362(1), 1–7. https://doi.org/10.1093/femsle/fnu040.

    Article  CAS  Google Scholar 

  • Schmidt, I., Van Spanning, R. J. M., & Jetten, M. S. M. (2004). Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirKand NorB-deficient mutants. Microbiology, 150(12), 4107–4114. https://doi.org/10.1099/mic.0.27382-0.

    Article  CAS  Google Scholar 

  • Starkenburg, S. R., Chain, P. S. G., Sayavedra-Soto, L. A., Hauser, L., Land, M. L., Larimer, F. W., Malfatti, S. A., Klotz, M. G., Bottomley, P. J., Arp, D. J., & Hickey, W. J. (2006). Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter Winogradskyi Nb-255. Applied and Environmental Microbiology, 72(3), 2050–2063. https://doi.org/10.1128/AEM.72.3.2050-2063.2006.

  • Stein, L. Y., & Arp, D. J. (1998). Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Applied and Environmental Microbiology, 64(10), 4098–4102 http://PMCID: PMC106612.

    Article  CAS  Google Scholar 

  • Tappe, W., Laverman, A., Bohland, M., Braster, M., Rittershaus, S., Groeneweg, J., & Van Verseveld, H. W. (1999). Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Applied and Environmental Microbiology, 65(6), 2471–2477 http://PMCID: PMC91364.

    Article  CAS  Google Scholar 

  • Te, S. H., & Gin, K. Y. (2011). The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae, 10, 319–329. https://doi.org/10.1016/j.hal.2010.11.006.

    Article  CAS  Google Scholar 

  • Terry, K. R., & Hooper, A. B. (1970). Polyphosphate and orthophosphate content of Nitrosomonas europaea as a function of growth. Journal of Bacteriology, 103(1), 199–206 http://PMCID: PMC248057.

    Article  CAS  Google Scholar 

  • US EPA. United State Environmental protection Agency. Information for Ground Water and Drinking Water. Disponível em: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations . Acesso em: 31 de Nov 2019.

  • Van Spanning, R. J. M., Richardson, D. J., Ferguson, S. J. (2007). Biology of the nitrogen cycle. Introduction to the Biochemistry and Molecular Biology of Denitrification. Bothe, H., Ferguson, S. J., Newton, W. E (Eds). (Vol. 1, Cap. 1, pp 3–20). Amsterdam, Boston.

  • Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2985–3001. https://doi.org/10.1016/j.scitotenv.2018.09.320.

    Article  CAS  Google Scholar 

  • Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5–9. https://doi.org/10.1016/j.coesh.2018.03.001.

    Article  Google Scholar 

  • Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358–365. https://doi.org/10.1016/j.envpol.2016.07.011.

    Article  CAS  Google Scholar 

  • Wang, D., Li, X., Yang, Q., Zeng, G., Liao, D., & Zhang, J. (2008). Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology, 99(13), 5466–5473. https://doi.org/10.1016/j.biortech.2007.11.007.

    Article  CAS  Google Scholar 

  • Wang, J., Fu, Z., Qiao, H., & Liu, F. (2019). Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Science of the Total Environment, 650(1), 1392–1402. https://doi.org/10.1016/j.scitotenv.2018.09.137.

    Article  CAS  Google Scholar 

  • Yan, X., Xu, X., Wang, M., Wang, G., Wu, S., Li, Z., Sun, H., Shi, A., & Yang, Y. (2017). Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Research, 125, 449–457. https://doi.org/10.1016/j.watres.2017.09.008.

    Article  CAS  Google Scholar 

  • Yuan, F., Wei, Y. D., Gao, J., & Chen, W. (2019). Water crisis, environmental regulations and location dynamics of pollution-intensive industries in China: A study of the Taihu Lake watershed. Journal of Cleaner Production, 216, 311–322. https://doi.org/10.1016/j.jclepro.2019.01.177.

    Article  Google Scholar 

  • Zhang, Y., Zhang, Y., Gao, J., Shen, Q., Bai, Z., Zhuang, X., & Zhuang, G. (2018). Optimization of the medium for the growth of Nitrobacter winogradskyi by statistical method. Letters in Applied Microbiology, 67(3), 306–313. https://doi.org/10.1111/lam.13036.

    Article  CAS  Google Scholar 

  • Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., & Wan, S. (2008). Biological removal of nitrogen from wastewater. Springer. Rev Environ Contam Toxicol, 192(1), 159–195.

    Article  CAS  Google Scholar 

  • Zou, H., Guo-Cheng, D., Ruan, W.-Q., & Chen, J. (2006). Role of nitrate in biological phosphorus removal in a sequencing batch reactor. World Journal of Microbiology & Biotechnology, 22(7), 701–706. https://doi.org/10.1007/s11274-005-9093-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Souza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biological treatment is an effective way to remove micropollutants.

• Bacteria efficiency is related to contact time with nitrogen and phosphorus.

• Bacterial pool removes 100% of nitrogen and phosphorus.

• The bacteria can be applied as water micro pollutant remediators.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J., de Aguiar Junior, T.R. Efficiency of Nitrifying and Denitrifying Bacteria in Removing Micropollutants in Water Samples. Water Air Soil Pollut 231, 180 (2020). https://doi.org/10.1007/s11270-020-04523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04523-z

Keywords

Navigation