Skip to main content

Advertisement

Log in

Biochar Improves the Growth Performance of Maize Seedling in Response to Antimony Stress

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Antimony (Sb) contamination has become an increasing environmental concern. A pot experiment was conducted to investigate the effects of biochar application on the maize seedling grown in Sb-contaminated soil. Two Sb levels (0, 200 mg kg−1) and three biochar rates (0, 1%, 4%) were included, giving a combination of six treatments. The results showed that exposure to Sb without biochar application (Sb2BC0) induced undesirable effects on maize seedlings, such as the inhibited growth of leaves, stems, and roots; the disorder of antioxidant system; and the reduced uptake of nutrients. Compared with Sb2BC0, biochar application to Sb-treated plants alleviated the negative effects of Sb, possibly due to the following findings: (1) the enhanced activities of SOD, POD, and CAT and the increased leaf chlorophyll content while accompanied with the reduced MDA content; (2) the increased N, P, and K content in both shoot and root; (3) the decreased shoot Sb accumulation due to the reduced translocation efficiency from root to shoot. In contrast, biochar application to nil Sb-treated soil had no significant effect on maize growth. Biochar application also immobilized soil Sb by transforming the relatively available fractions to geochemically more stable Fe and Al oxides bound fractions. These results indicated great potential of using biochar to reduce soil Sb availability for Sb-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., Hashimoto, Y., & Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433–441.

    CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C. W., & Ok, Y. S. (2016a). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 17, 717–730.

    Google Scholar 

  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., & Lee, S. S. (2016b). Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186.

    CAS  Google Scholar 

  • An, Y. J., & Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 74, 654–659.

    CAS  Google Scholar 

  • Assche, F., & Clijsters, H. (1990). Effects of metal on enzyme activity in plants. Plant, Cell, & Environment, 13, 195–206.

    Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmure, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    CAS  Google Scholar 

  • Beesley, L., Marmiroli, M., Pagano, L., Pioni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., & Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454-455, 598–603.

    CAS  Google Scholar 

  • Dhindsa, R. S., Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased leaves of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Wu, F., & Yang, L. (2009). Antimony accumulation and antioxidative responses in four fern plants. Plant and Soil, 317, 93–101.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Tang, S. R., & Wu, F. (2011). Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchemical Journal, 97, 57–61.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., & Guo, J. (2013a). The uptake and detoxification of antimony by plants: A review. Environmental and Experimental Botany, 96, 28–34.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., & Liu, Z. (2013b). Interactive effects of selenium and antimony on the uptake of selenium, antimony and essential elements in paddy-rice. Plant and Soil, 365, 375–386.

    CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. (2002). Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth-Science Reviews, 57, 125–176.

    CAS  Google Scholar 

  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the Total Environment, 421-422, 41–50.

    CAS  Google Scholar 

  • He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A., & Shan, J. (2019). Antimony speciation in the environment: Recent advances in understanding the biogeochemical process and ecological effects. Journal of Environmental Sciences, 75, 14–39.

    Google Scholar 

  • Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2015). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15, 126–138.

    CAS  Google Scholar 

  • Hu, X., He, M., Li, S., & Guo, X. (2017). The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. Journal of Geochemical Exploration, 176, 76–84.

    CAS  Google Scholar 

  • Ibrahim, M., Khan, S., Hao, X., Li, G., & Zhu, Y. (2016). Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil. International journal of Environmental Science and Technology, 13, 2467–2474.

    CAS  Google Scholar 

  • Krachler, M., Emons, H., & Zheng, J. (2001). Speciation of antimony for the 21st century: Promises and pitfalls. TrAC Trends in Analytical Chemistry, 20, 79–90.

    CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 87, 1–12.

    CAS  Google Scholar 

  • Lan, W., Song, S., Wu, H., & Wang, D. (2009). Effects of soil antimony(III) pollution on the growth and quality of sweet mustard. Environ Science & Technology, 32, 20–23 (in Chinese).

    CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - a review. Soil Biology and Biochemistry, 43, 1812–1836.

    CAS  Google Scholar 

  • Li, J., Wei, Y., Zhao, L., Zhang, J., Shangguan, Y., Li, F., & Hou, H. (2014). Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology and Environmental Safety, 110, 308–315.

    CAS  Google Scholar 

  • Li, J., Zheng, B., He, Y., Zhou, Y., Chen, X., Ruan, S., Yang, Y., Dai, C. H., & Tang, L. (2018a). Antimony contamination, consequences and removal techniques: A review. Ecotoxicology and Environmental Safety, 156, 125–134.

    CAS  Google Scholar 

  • Li, G., Khan, S., Ibrahim, M., Sun, T., Tang, J., Cotner, J. B., & Xu, Y. (2018b). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 348, 100–108.

    CAS  Google Scholar 

  • Lu, R. K. (2000). Soil agricultural chemistry analysis methods. Beijing: Agricultural Technology Press.

    Google Scholar 

  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Song, Z., Liu, X., & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292.

    CAS  Google Scholar 

  • Ma, C., He, M., Zhong, Q., Ouyang, W., Lin, C., & Liu, X. (2019). Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum). Science of the Total Environment, 669, 421–430.

    CAS  Google Scholar 

  • Maehly, A.C. (2006). The assay of catalase and peroxidases. In: Methods of biochemical analysis. John Wiley & Sons, Inc., Hoboken, NJ, USA.

  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    CAS  Google Scholar 

  • Muller, K., Daus, B., Morgenstern, P., & Wennrich, R. (2007). Mobilization of antimony and arsenic in soil and sediment samples - evaluation of different leaching procedures. Water Air and Soil Pollution, 183, 427–436.

    Google Scholar 

  • Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research, 48, 638–647.

    CAS  Google Scholar 

  • Obiakor, M. O., Wilson, S. C., Tighe, M., & Pereg, L. (2019). Antimony causes mortality and induces mutagenesis in the soil functional bacterium Azospirillum brasilense Sp7. Water, Air, & Soil Pollution, 230, 183.

    Google Scholar 

  • Pan, X., Zhang, D., Chen, X., Bao, A., & Li, L. (2011). Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water Air and Soil Pollution, 215, 517–523.

    CAS  Google Scholar 

  • Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.

    CAS  Google Scholar 

  • Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesly, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.

    CAS  Google Scholar 

  • Shen, Z., Som, A. M., Wang, F., Jin, F., McMillan, O., & Al-Tabbaa, A. (2016). Long-term impact of biochar on the immobilisation of nickel(II) and zinc(II) and the revegetation of a contaminated site. Science of the Total Environment, 542, 771–776.

    CAS  Google Scholar 

  • Shtangeeva, I., Bali, R., & Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110, 40–45.

    CAS  Google Scholar 

  • Smichowski, P. (2008). Antimony in the environment as a global pollutant: A review on analytical methodologies for its determination in atmospheric aerosols. Talanta, 75, 2–14.

    CAS  Google Scholar 

  • Sun, X., Li, B., Han, F., Xiao, E., Wang, Q., Xiao, T., & Sun, W. (2019). Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment. Environmental Pollution, 252, 1872–1881.

    CAS  Google Scholar 

  • Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116, 653–659.

    CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Ahmad, M., Uchimiya, M., Dou, X., Alessi, D. S., & Ok, Y. S. (2015). Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 151, 443–449.

  • Vithanage, M., Herath, I., Almaroai, Y. A., Rajapaksha, A. U., Huang, L., Sung, J. K., Lee, S. S., & Ok, Y. S. (2017). Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environmental Geochemistry and Health, 39, 1409–1420.

    CAS  Google Scholar 

  • Wang, S., & Pan, X. (2012). Effects of Sb(V) on growth and chlorophyll fluorescence of Microcystis aeruginosa (FACHB-905). Current Microbiology, 65, 733–741.

    CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    CAS  Google Scholar 

  • Zhang, D., Pan, X., Mu, G., & Wang, J. (2010a). Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. Journal of Applied Phycology, 22, 479–488.

    Google Scholar 

  • Zhang, H., Huang, Y., Liu, G., Xu, Y., Liu, J., Bei, Q., Lin, X., Zhu, J., & Xie, Z. (2010b). Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 19, 2713–2717 (in Chinese).

    Google Scholar 

  • Zheng, R., Cai, C., Liang, J., Huang, Q., Chen, Z., Huang, Y., Arp, H. P., & Sun, G. (2012). The effects of biochars from rice residues on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere, 89, 856–862.

    CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (31572202) and Anhui Province Key Laboratory of Plant Resource and Biology Project (ZYZWSW2014010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangzuo Shu or Hongqing Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Zhu, J., Pang, J. et al. Biochar Improves the Growth Performance of Maize Seedling in Response to Antimony Stress. Water Air Soil Pollut 231, 154 (2020). https://doi.org/10.1007/s11270-020-04521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04521-1

Keywords

Navigation