Skip to main content
Log in

Formation of Nitrosodipropylamine from Nitrogenous Contaminants (Amines and Amine-Based Pesticides) in Water During Chloramination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chloramination of drinking water and wastewater can generate carcinogenic nitrosamines, among which, nitrosodipropylamine (NDPA) with large molecular weight and weak polarity has been commonly found. However, knowledge on the formation of NDPA remains highly limited. Laboratory tests were conducted to quantify NDPA formation during chloramination of nitrogenous precursors, including dipropylamine and methyldipropylamine, and pesticides such as trifluralin, oryzalin, and vernolat. Results showed that all precursors exhibited > 10.0% NDPA yields after 24 h. Oryzalin and trifluralin accomplished the highest (13.63%) and lowest (11.31%) yield, respectively. Maximal yields of all precursors were observed at pH 9.0 and temperature 288 K. Maximums of NDPA yield from oryzalin (18.27%) and vernolat (19.54%) were formed at Cl:N of 0.7:1.0, but maximal yields of dipropylamine (18.44%), methyldipropylamine (22.98%), and trifluralin (33.06%) were achieved at Cl:N of 1.2:1.0. Maximal NDPA yields of dipropylamine (37.14%), methyldipropylamine (32.84%), and vernolat (49.02%) were observed at [NH2Cl]0:[precursor]0 = 500, but highest yields of trifluralin (30.24%) and oryzalin (25.53%) were accomplished at [NH2Cl]0:[precursor]0 = 50. Bromide and organic contents in tap and raw water reduced NDPA due to competition for NH2Cl. Chloramination of water impacted by amines and pesticides should be careful of NDPA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akyuz, M., & Atu, S. (2006). Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1129, 88–94.

    Google Scholar 

  • Bi, F., Zhang, X., Chen, J., Yang, Y., & Wang, Y. (2020). Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Applied Catalysis B: Environmental, 269, 118767.

    CAS  Google Scholar 

  • Bond, T., Huang, J., Templeton, M. R., & Graham, N. (2011). Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Research, 45, 4341–4354.

    CAS  Google Scholar 

  • Boyd, J. M., Hrudey, S. E., Richardson, S. D., & Li, X. F. (2011). Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. TrAC, Trends in Analytical Chemistry, 30, 1410–1421.

    CAS  Google Scholar 

  • CDPH (2006), Notification levels overview. http://www.dhs.ca.gov/ps/ddwem/chemicals/AL/notificationoverview.pdf.

  • CDPH (2009), NDMA and other nitrosamines. Drinking water issues.

  • Charrois, J. W. A., Arend, M. W., Froese, K. L., & Hrudey, S. E. (2004). Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environmental Science & Technology, 38, 4835–4841.

    CAS  Google Scholar 

  • Chen, W. H., & Young, T. M. (2008). NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environmental Science & Technology, 42, 1072–1077.

    CAS  Google Scholar 

  • Chen, Z., & Valentine, R. L. (2006). Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine. Environmental Science & Technology, 40, 7290–7297.

    CAS  Google Scholar 

  • Chen, J., Zhang, X., Bi, F., Zhang, X., Yang, Y. & Wang, Y. (2020). A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2020.03.055.

  • Chu, W. H., Gao, N. Y., Deng, Y., & Krasner, S. W. (2010). Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environmental Science & Technology, 44, 3908–3912.

    CAS  Google Scholar 

  • Chu, W. H., Gao, N. Y., Deng, Y., Templeton, M. R., & Yin, D. Q. (2011a). Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere, 85, 1187–1191.

    CAS  Google Scholar 

  • Chu, W. H., Gao, N. Y., Deng, Y., Templeton, M. R., & Yin, D. Q. (2011b). Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresource Technology, 102, 11161–11166.

    CAS  Google Scholar 

  • Donald, D. B., Cessna, A. J., Sverko, E., & Glozier, N. E. (2007). Pesticides in surface drinking-water supplies of the northern Great Plains. Environmental Health Perspectives, 115, 1183–1191.

    CAS  Google Scholar 

  • Flury, M., & Papritz, A. (1993). Bromide in the natural environment: Occurrence and toxicity. Journal of Environmental Quality, 22, 747–758.

    CAS  Google Scholar 

  • Gerecke, A. C., & Sedlak, D. L. (2003). Precursors of N-mitrosodimethylamine in natural waters. Environmental Science & Technology, 37, 1331–1336.

    CAS  Google Scholar 

  • Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: APHA-AWWA-WEF.

    Google Scholar 

  • Hecht, S. S. (1997). Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis. Proceedings of the Society for Experimental Biology and Medicine, 216, 181–191.

    CAS  Google Scholar 

  • Jobb, D. B., Hunsinger, R. B., Meresz, O., & Taguchi, V. (1994). Removal of N-nitrosodimethylamine from the Ohsweken (six nations) water supply final report. In Ontario Ministry of Environment and Energy. Toronto.

  • Kemper, J. M., Walse, S. S., & Mitch, W. A. (2010). Quaternary amines as nitrosamine precursors: A role for consumer products? Environmental Science & Technology, 44, 1224–1231.

    CAS  Google Scholar 

  • Krasner, S. W., Westerhoff, P., Chen, B. Y., Rittmann, B. E., Nam, S. N., & Amy, G. (2009). Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter. Environmental Science & Technology, 43, 2911–2918.

    CAS  Google Scholar 

  • Kristiana, I., Liew, D., Henderson, R. K., Joll, C. A., & Linge, K. L. (2017). Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations. Journal of Environmental Sciences, 58, 102–115.

    Google Scholar 

  • Le Roux, J., Gallard, H., & Croue, J. P. (2011). Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Research, 45, 3164–3174.

    Google Scholar 

  • Lee, C., Schmidt, C., Yoon, J., & von Gunten, U. (2007). Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environmental Science & Technology, 41, 2056–2063.

    CAS  Google Scholar 

  • Linge, K. L., Kristiana, I., Liew, D., Nottle, C. E., Heitz, A., & Joll, C. A. (2017). Formation of N-nitrosamines in drinking water sources: Case studies from western Australia. Journal of American Water Works Association, 109, E184–E196.

    Google Scholar 

  • Liu, X. L., Zheng, W. W., Wei, X., Chen, H. Y., Wang, X., Zhang, H. M., Jiang, S. H., He, G. S., & Qu, W. D. (2012). Investigation on the levels of carbon-, nitrogen-, iodine-containing disinfection by-products in a water plant in Jiangsu province, China. Chinese Journal of Preventive Medicine, 46, 133–138.

    CAS  Google Scholar 

  • Mitch, W. A., & Sedlak, D. L. (2002a). Factors controlling nitrosamine formation during wastewater chlorination. 2nd world water congress: Water and health-microbiology. Monitoring and Disinfection, 2, 191–198.

    CAS  Google Scholar 

  • Mitch, W. A., & Sedlak, D. L. (2002b). Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology, 36, 588–595.

    CAS  Google Scholar 

  • Mitch, W. A., Gerecke, A. C., & Sedlak, D. L. (2003a). A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research, 37, 3733–3741.

    CAS  Google Scholar 

  • Mitch, W. A., Sharp, J. O., Trussell, R. R., Valentine, R. L., Alvarez-Cohen, L., & Sedlak, D. L. (2003b). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering and Science, 20, 389–404.

    CAS  Google Scholar 

  • O’Neill, I. K., Borstel, R. C. V., Miller, C. T., Long, J., & Bartsch, H. (1984). N-nitroso compounds: Occurrence, biological effects and relevance to human cancer. In IARC Scientific Publication No. 57. Lyon: Oxford University Press.

    Google Scholar 

  • Park, S. H., Wei, S., Huang, C. H., Mizaikoff, B., & Aral, M. M. (2007). Study of the effect of polymers on potential N-nitrosodimethylamine (NDMA) formation at water and waste water treatment plants, School of civil and environmental engineer. Atlanta: Georgia institute of technology.

    Google Scholar 

  • Schmidt, C. K., & Brauch, H. J. (2008). N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environmental Engineering and Science, 42, 6340–6346.

    CAS  Google Scholar 

  • Schreiber, I. M., & Mitch, W. A. (2005). Influence of the order of reagent addition on NDMA formation during chloramination. Environmental Engineering and Science, 39, 3811–3818.

    CAS  Google Scholar 

  • Schreiber, I. M., & Mitch, W. A. (2006). Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environmental Engineering and Science, 40, 6007–6014.

    CAS  Google Scholar 

  • Shen, R., & Andrews, S. A. (2011). Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research, 45, 944–952.

    CAS  Google Scholar 

  • Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry (pp. 368–399). New York: John Wiley & Sons.

    Google Scholar 

  • Taguchi, V., Jenkins, S. D. W., Wang, D. T., Palmentier, J. P. F. P., & Reiner, E. J. (1994). Determination of N-nitrosodimethylamine by isotope-dilution, high-resolution mass-spectrometry. Canadian Journal of Applied Spectroscopy, 39, 87–93.

    CAS  Google Scholar 

  • Templeton, M. R., & Chen, Z. (2010). NDMA and seven other nitrosamines in selected UK drinking water supply systems. Journal of Water Supply: Research and Technology, 59, 277–283.

    CAS  Google Scholar 

  • Trofe, T. W., Inman, G. W., & Johnson, J. D. (1980). Kinetics of monochloramine decomposition in the presence of bromide. Environmental Engineering and Science, 14, 544–549.

    CAS  Google Scholar 

  • USEPA. (1989). Office of Drinking Water. Washington, DC: Trifluralin. Health advisory.

    Google Scholar 

  • USEPA (2006). Unregulated contaminant monitoring Rule 2 (UCMR2). http://www.epa.gov/safewater/ucmr/ucmr2/index.html.

  • USEPA (2009). Contaminant Candidate List. http://www.epa.gov/OGWDW/ccl/ccl3.html.

  • Valentine, R. L., & Jafvert, C. T. (1988). General acid catalysis of monochloramine disproportionation. Environmental Science & Technology, 22, 691–696.

    CAS  Google Scholar 

  • Vikesland, P. J., Ozekin, K., & Valentine, R. L. (2001). Monochloramine decay in model and distribution system waters. Water Research, 35, 1766–1776.

    CAS  Google Scholar 

  • Wang, L., Yin, G. Y., Yang, Y. Q., & Zhang, X. D. (2019a). Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. Reaction Kinetics, Mechanisms and Catalysis, 128, 193–204.

    CAS  Google Scholar 

  • Wang, W. F., Ren, S. Y., Zhang, H. F., Yu, J. W., An, W., Hu, J. Y., & Yang, M. (2011). Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors. Water Research, 45, 4930–4938.

    CAS  Google Scholar 

  • Wang, Y., Wang, Y., Yu, L., Wang, R., & Zhang, X. (2020a). Highly effective microwave-induced catalytic degradation of Bisphenol A in aqueous solution using double-perovskite intercalated montmorillonite nanocomposite. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2020.124550.

  • Wang, Y., Yu, L., Wang, R., Wang, Y., & Zhang, X. (2020b). Microwave catalytic activities of supported perovskite catalysts MOx/LaCo0.5Cu0.5O3@CM (M=Mg, Al) for salicylic acid degradation. Journal of Colloid and Interface Science, 564, 392–405.

    CAS  Google Scholar 

  • Wang, Z., Sun, Q., Wang, D., Hong, Z., Qu, Z., & Li, X. (2019b). Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2 resistant selective catalytic oxidation of ammonia to nitrogen. Separation and Purification Technology, 209, 1016–1026.

    CAS  Google Scholar 

  • West, S. D., Hastings, M. J., Shackelford, D. D., & Dial, G. E. (2004). Determination of oryzalin in water, citrus fruits, and stone fruits by liquid chromatography with tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 52, 5781–5786.

    CAS  Google Scholar 

  • Yang,Y., Yang, M., Zheng, Z., & Zhang X. (2020a). Highly effective adsorption removal of perfluorooctanoic acid (PFOA) from aqueous solution using calcined layer-like Mg-Al hydrotalcites nanosheets. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-020-07892-4.

  • Yang, Y., Zheng, Z., Zhang, D., & Zhang, X. (2020b). Response surface methodology directed adsorption of chlorate and chlorite onto MIEX resin and chemical properties study. Environmental Science: Water Research & Technology. https://doi.org/10.1039/C9EW01003C.

  • Zhang, C., Huang, H., Li, G., Wang, L., Song, L., & Li, X. (2019a). Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catalysis Today, 327, 374–381.

    CAS  Google Scholar 

  • Zhang, X., Song, L., Bi, F., Zhang, D., Wang, Y.,  & Cui, L. (2020a). Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. Journal of Colloid and Interface Science, 571, 38–47.

  • Zhang, X. D., Lv, X. T., Bi, F. K., Lu, G., & Wang, Y. (2020b). Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors. Molecular Catalysis, 482, 110701.

    CAS  Google Scholar 

  • Zhang, X., Shi, X., Chen, J., Yang, Y., & Lu, G. (2019b). The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene. Journal of Environmental Chemical Engineering, 7, 103405.

    CAS  Google Scholar 

  • Zhao, Y. Y., Boyd, J., Hrudey, S. E., & Li, X. F. (2006). Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environmental Science & Technology, 40, 7636–7641.

    CAS  Google Scholar 

  • Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W., & Zhou, S. (2012). Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials, 231–232, 43–48.

    Google Scholar 

  • Zhou, M., Wang, Z., Sun, Q., Wang, J., Zhang, C., Chen, D., & Li, X. (2019). High performance Ag-Cu Nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Applied Materials Interfaces., 11, 46875–46885.

    CAS  Google Scholar 

  • Zhou, W. J., Boyd, J. M., Qin, F., Hrudey, S. E., & Li, X. F. (2009). Formation of N-nitrosodiphenylamine and two new N-containing disinfection byproducts from chloramination of water containing diphenylamine. Environmental Science & Technology, 43, 8443–8448.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China (YRWEF201905), and the National Natural Science Foundation of China (No. 51508327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqiong Yang or Xiaodong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Bai, J., He, C. et al. Formation of Nitrosodipropylamine from Nitrogenous Contaminants (Amines and Amine-Based Pesticides) in Water During Chloramination. Water Air Soil Pollut 231, 141 (2020). https://doi.org/10.1007/s11270-020-04519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04519-9

Keywords

Navigation