Skip to main content

Advertisement

Log in

Preparation of Sewage Sludge–Based Activated Carbon for Hydrogen Sulphide Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The circular economy concept boosts the use of wastes as secondary raw materials in the EU renewable and sustainable framework. In wastewater treatment plants (WWTP), sludge is one of the most important wastes, and its management is being widely discussed in the last years. In this work, sewage sludge from WWTP was employed as raw material for producing activated carbon (AC) by physical-chemical activation. The prepared AC was subsequently tested for hydrogen sulphide removal in view of its further use in deodorization in a WWTP. The effects of the activation temperature and the chemical agent used (NaOH and KOH) during the activation process were studied. On the one hand, the characteristics of each AC fabricated were analysed in terms of BET (Brunauer-Emmett-Teller) surface area, pore and micropore volume, pore diameter, surface morphology and zeta potential. On the other hand, BET isotherms were also calculated. Finally, both the prepared AC and a commercial AC were tested for H2S removal from a gas stream. Results demonstrated that the optimum physical and chemical activation temperature was 600 °C and 1000 °C, respectively, and the best activated agent tested was KOH. The prepared AC showed excellent properties (specific surface area around 300 m2/g) for H2S removal, even better efficiencies than those achieved by the tested commercial AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade, S. N., Veloso, C. M., Fontan, R. C. I., Bonomo, R. C. F., Santos, L. S., Brito, M. J. P., & Diniz, G. A. (2018). Chemical-activated carbon from coconut (Cocos nucifera) endocarp waste and its application in the adsorption of beta lactoglobulin protein. Revista Mexicana de Ingenieria Quimica, 17(2), 463–475.

    CAS  Google Scholar 

  • APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater. Washington.

  • Arami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89, 197–203.

    CAS  Google Scholar 

  • Aslam, Z., Shawabkeh, R., Hussein, I., Al-Baghli, N., & Eic, M. (2015). Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Applied Surface Science, 327, 107–115.

    CAS  Google Scholar 

  • Carrete, J., García, M., Rodríguez, J. R., Cabeza, O., & Varela, L. M. (2011). Theoretical model for moisture adsorption on ionic liquids: a modified Brunauer–Emmet–Teller isotherm approach. Fluid Phase Equilibria, 301, 118–122.

    CAS  Google Scholar 

  • Chen, C. L., Park, S. W., Su, J. F., Yu, Y. H., Heo, J. E., Kim, K. D., & Huang, C. P. (2019). The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 693, 133605.

    CAS  Google Scholar 

  • Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C., & Shu, J. (2018). Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of Environmental Sciences, 65, 92–102.

    Google Scholar 

  • Chiavola, A. (2013). Textiles. Water Environment Research, 85, 1581–1600.

    Google Scholar 

  • De Falco, G., Montagnaro, F., Balsamo, M., Erto, A., Deorsola, F. A., Lisi, L., & Cimino, S. (2018). Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H 2 S at room temperature. Microporous and Mesoporous Materials, 257, 135–146.

    Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85, 833–846.

    CAS  Google Scholar 

  • Donald, J., Ohtsuka, Y., & Xu, C. C. (2011). Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Materials Letters, 65, 744–747.

    CAS  Google Scholar 

  • dos Reis, G. S., Mahbub, M. K. B., Wilhelm, M., Lima, E. C., Sampaio, C. H., Saucier, C., & Dias, S. L. P. (2016). Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean Journal of Chemical Engineering, 33(11), 3149–3161.

    Google Scholar 

  • Hadi, P., Xu, M., Ning, C., Lin, C. S. K., & McKay, G. (2015). A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 260, 895–906.

    CAS  Google Scholar 

  • Kacan, E. (2016). Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. Journal of Environmental Management, 166, 116–123.

    CAS  Google Scholar 

  • Kazak, O., Eker, Y. R., Bingol, H., & Tor, A. (2018). Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. Journal of Molecular Liquids, 272, 189–197.

    CAS  Google Scholar 

  • Kimura, K., Honoki, D., & Sato, T. (2017). Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: up-concentration of organic matter for efficient energy recovery. Separation and Purification Technology, 181, 37–43.

    CAS  Google Scholar 

  • Kuroda, S., Nagaishi, T., Kameyama, M., Koido, K., Seo, Y., & Dowaki, K. (2018). Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. International Journal of Hydrogen Energy, 43, 16573–16588.

    CAS  Google Scholar 

  • Ladavos, A. K., Katsoulidis, A. P., Iosifidis, A., Triantafyllidis, K. S., Pinnavaia, T. J., & Pomonis, P. J. (2012). The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous and Mesoporous Materials, 151, 126–133.

    CAS  Google Scholar 

  • Lapham, D. P., & Lapham, J. L. (2017). Gas adsorption on commercial magnesium stearate: effects of degassing conditions on nitrogen BET surface area and isotherm characteristics. International Journal of Pharmaceutics, 530, 364–376.

    CAS  Google Scholar 

  • Li, W. H., Yue, Q. Y., Gao, B. Y., Ma, Z. H., Li, Y. J., & Zhao, H. X. (2011). Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171, 320–327.

    CAS  Google Scholar 

  • Li, F., Lei, T., Zhang, Y., Wei, J., & Yang, Y. (2015). Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering, 9(2), 190–196.

    CAS  Google Scholar 

  • Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.

    CAS  Google Scholar 

  • Li, D., Zhou, J., Wang, Y., Tian, Y., Wei, L., Zhang, Z., Qiao, Y., & Li, J. (2019). Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel, 238, 232–239.

    CAS  Google Scholar 

  • Li, Y. H., Chang, F. M., Huang, B., Song, Y. P., Zhao, H. Y., & Wang, K. J. (2020). Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel, 266, 117053.

    Google Scholar 

  • Mininni, G., Blanch, A. R., Lucena, F., & Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environmental Science and Pollution Research, 22, 7361–7374.

    CAS  Google Scholar 

  • Pandiarajan, A., Kamaraj, R., Vasudevan, S., & Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341.

    CAS  Google Scholar 

  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, and Soil Pollution, 229.

  • Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., Santos Júnior, O. O., Visentainer, J. V., & Almeida, V. C. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778–788.

    CAS  Google Scholar 

  • Ping, Q., Zheng, M., Dai, X., & Li, Y. (2020). Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: fatty acid biosynthesis metabolic pathway and CAZymes. Water Research, 170, 115309.

    CAS  Google Scholar 

  • Qiu, M., & Huang, C. (2015). Removal of dyes from aqueous solution by activated carbon from sewage sludge of the municipal wastewater treatment plant. Desalination and Water Treatment, 53, 3641–3648.

    CAS  Google Scholar 

  • Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. The Journal of Energy Storage, 20, 418–426.

    Google Scholar 

  • Satya Sai, P. M., & Krishnaiah, K. (2005). Development of the pore-size distribution in activated carbon produced from coconut shell char in a fluidized-bed reactor. Industrial and Engineering Chemistry Research, 44, 51–60.

    Google Scholar 

  • Shen, F., Liu, J., Zhang, Z., Dong, Y., & Gu, C. (2018). Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Processing Technology, 171, 258–264.

    CAS  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57.

  • Sulaiman, N. S., Hashim, R., Mohamad Amini, M. H., Danish, M., & Sulaiman, O. (2018). Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. Journal of Cleaner Production, 198, 1422–1430.

    CAS  Google Scholar 

  • Sun, K., Huang, Q., Chi, Y., & Yan, J. (2018). Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Management, 81, 128–137.

    CAS  Google Scholar 

  • Tian, D., Xu, Z., Zhang, D., Chen, W., Cai, J., Deng, H., Sun, Z., & Zhou, Y. (2019). Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. Journal of Solid State Chemistry, 269, 580–587.

    CAS  Google Scholar 

  • Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153, 22–27.

    CAS  Google Scholar 

  • Wang, N., Zhang, W., Cao, B., Yang, P., Cui, F., & Wang, D. (2018). Advanced anaerobic digested sludge dewaterability enhancement using sludge based activated carbon (SBAC) in combination with organic polymers. Chemical Engineering Journal, 350, 660–672.

    CAS  Google Scholar 

  • Wei Yu, K. S. (2018). Modeling gas adsorption in Marcellus shale using Langmuir and BET isotherms. In Shale gas and tight oil reservoir simulation (pp. 129–154).

    Google Scholar 

  • Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Chang, S. W., Nguyen, D. D., Liang, H., & Wang, J. (2018). A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresource Technology, 268, 749–758.

    CAS  Google Scholar 

  • Zhang, J. P., Sun, Y., Woo, M. W., Zhang, L., & Xu, K. Z. (2016). Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: experimental and simulation works. Revista Mexicana de Urología, 76, 395–404.

    Google Scholar 

  • Zhang, Y., Song, X., Xu, Y., Shen, H., & Kong, X. (2019). Utilization of wheat bran for producing activated carbon with high speci fi c surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210, 366–375.

    CAS  Google Scholar 

  • Zhu, J., Li, Y. H., Xu, L., & Liu, Z. Y. (2018). Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicology and Environmental Safety, 165, 115–125.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Luján-Facundo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luján-Facundo, M.J., Iborra-Clar, M.I., Mendoza-Roca, J.A. et al. Preparation of Sewage Sludge–Based Activated Carbon for Hydrogen Sulphide Removal. Water Air Soil Pollut 231, 187 (2020). https://doi.org/10.1007/s11270-020-04518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04518-w

Keywords

Navigation