Skip to main content
Log in

Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pyrene, a toxic four-benzene-ring that persists in the ecosystem, is highly resistant to degradation. The goal of the research is to screen, isolate, and identify pyrene-degrading filamentous fungi via the molecular biological identification method. The capabilities of identified isolates in biodegradation and transformation of pyrene were also evaluated. Based on the morphological characterization and sequence alignments, results of neighbor-joining phylogenetic tree from 18S rRNA of F03 revealed that genetic similarity had achieved 99% of homology percentage and identified as Trichoderma sp. Trichoderma sp. F03 was able to degrade pyrene (78%) when culture conditions were set at 100 mg/L initial pyrene concentration in culture medium with pH 5 at 27 °C, the use of glucose as a carbon source and polyethylene glycol sorbitan monooleate as a biosurfactant without agitation. Finally, three metabolites, benzoic acid, 3-hydroxybenzoic acid, and acetic acid, were detected during the pyrene degradation process by using gas chromatography–mass spectrometry (GCMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adnan, L. A., Sathishkumar, P., Mohd Yusoff, A. R., & Hadibarata, T. (2015). Metabolites characterisation of laccase mediated Reactive Black 5 biodegradation by fast growing ascomycete fungus Trichoderma atroviride F03. International Biodeterioration & Biodegradation, 104, 274–282.

    Article  CAS  Google Scholar 

  • Alexander, J. T., Hai, F. I., & Al-aboud, T. M. (2012). Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. Journal of Environmental Management, 111, 195–207.

    Article  CAS  Google Scholar 

  • Dai, Y., Zhang, N., Xing, C., Cui, Q., & Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere, 223, 12–27.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Khudhair, A. B., Kristanti, R. A., & Kamyab, H. (2017). Biodegradation of pyrene by Candida sp. S1 under high salinity conditions. Bioprocess and Biosystems Engineering, 40, 1411–1418.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2014). Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022. Biodegradation, 25, 373–382.

    Article  CAS  Google Scholar 

  • Jia, C., Li, P., Li, X., Tai, P., Liu, W., & Gong, Z. (2011). Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures. Process Biochemistry, 46, 1627–1631.

    Article  CAS  Google Scholar 

  • Kamyabi, A., Nouri, H., & Moghimi, H. (2018). Characterization of pyrene degradation and metabolite identification by Basidioascus persicus and mineralization enhancement with bacterial-yeast co-culture. Ecotoxicology and Environmental Safety, 163, 471–477.

    Article  CAS  Google Scholar 

  • Kong, L., Gao, Y., Zhou, Q., Zhao, X., & Sun, Z. (2018). Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials, 343, 276–284.

    Article  CAS  Google Scholar 

  • Kristanti, R. A., Hadibarata, T., Toyama, T., Tanaka, Y., & Mori, K. (2011). Bioremediation of crude oil by white rot fungi Polyporus sp. S133. Journal of Microbiology and Biotechnology, 21, 995–1000.

    Article  CAS  Google Scholar 

  • Kudlek, E., & Dudziak, M. (2018). Degradation pathways of pentachlorophenol and benzo(a)pyrene during heterogeneous photocatalysis. Water Science and Technology, 77, 2407–2414.

    Article  CAS  Google Scholar 

  • Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2017). Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management, 199, 46–61.

    Article  CAS  Google Scholar 

  • Lazim, Z. M., & Hadibarata, T. (2016). Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene. Brazilian Journal of Microbiology, 47, 610–616.

    Article  CAS  Google Scholar 

  • Liang, Y., Gardner, D. R., Miller, C. D., Chen, D., Anderson, A. J., Weimer, B. C., Sims, R. C., (2006). Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Applied and Environmental Microbiology, 72(12), 7821–7828.

  • Majcherczyk, A., Johannes, C., & Hüttermann, A. (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by Laccase of Trametes versicolor. Enzyme and Microbial Technology, 22, 335–341.

    Article  CAS  Google Scholar 

  • Miao, Y., Li, P., Li, G., Liu, D., Druzhinina, I. S., Kubicek, C. P., Shen, Q., & Zhang, R. (2017). Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi. Environmental Microbiology, 19, 1054–1064.

    Article  CAS  Google Scholar 

  • Monteiro, A. F., Seidl, C., Severino, V. G. P., Cardoso, C. L., & Castro-Gamboa, I. (2017). Biotransformation of labdane and halimane diterpenoids by two filamentous fungi strains. Royal Society Open Science, 4, 170854.

    Article  Google Scholar 

  • Ncube, S., Kunene, P., Tavengwa, N. T., Tutu, H., Richards, H., Cukrowska, E., & Chimuka, L. (2017). Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution. Journal of Environmental Management, 199, 192–200.

    Article  CAS  Google Scholar 

  • Peng, X., Yuan, X. Z., Liu, H., Zeng, G. M., & Chen, X. H. (2015). Degradation of polycyclic aromatic hydrocarbons (PAHs) by laccase in rhamnolipid reversed micellar system. Applied Biochemistry and Biotechnology, 176, 45–55.

    Article  CAS  Google Scholar 

  • Rabodonirina, S., Rasolomampianina, R., Krier, F., Drider, D., Merhaby, D., Net, S., & Ouddane, B. (2019). Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. Journal of Environmental Management, 232, 1–7.

    Article  CAS  Google Scholar 

  • Santos, L. O., dos Anjos, J. P., Ferreira, S. L. C., & de Andrade, J. B. (2017). Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS. Microchemical Journal, 133, 431–440.

    Article  CAS  Google Scholar 

  • Song, H.-G. (1999). Comparison of pyrene biodegradation by white rot fungi. World Journal of Microbiology and Biotechnology, 15, 669–672.

    Article  CAS  Google Scholar 

  • Vaidya, S., Devpura, N., Jain, K., & Madamwar, D. (2018). Degradation of chrysene by enriched bacterial consortium. Frontiers in Microbiology, 9, 1333.

    Article  Google Scholar 

  • Wang, S., Li, X., Liu, W., Li, P., Kong, L., Ren, W., Wu, H., & Tu, Y. (2012). Degradation of pyrene by immobilized microorganisms in saline-alkaline soil. Journal of Environmental Sciences, 24, 1662–1669.

    Article  CAS  Google Scholar 

  • Wirasnita, R., & Hadibarata, T. (2016). Potential of the white-rot fungus Pleurotus pulmonarius F043 for degradation and transformation of Fluoranthene. Pedosphere, 26, 49–54.

    Article  Google Scholar 

  • Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277.

    Article  CAS  Google Scholar 

  • Zheng, G., Selvam, A., & Wong, J. W. C. (2012). Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium. Bioresource Technology, 126, 397–403.

    Article  CAS  Google Scholar 

  • Zhu, F., Storey, S., Ashaari, M. M., Clipson, N., & Doyle, E. (2017). Benzo(a)pyrene degradation and microbial community responses in composted soil. Environmental Science and Pollution Research, 24, 5404–5414.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Deanship of Scientific Research at King Saud University, Saudi Arabia, for funding this work through research group no. RG1439-044 and AUN/Seed-Net JICA grant under the contract no. 4B231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunia Abdulaziz Al Farraj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Farraj, D.A., Hadibarata, T., Elshikh, M.S. et al. Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03. Water Air Soil Pollut 231, 168 (2020). https://doi.org/10.1007/s11270-020-04514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04514-0

Keywords

Navigation