Skip to main content

Advertisement

Log in

Concentration of Traces Metals in Underground Dams in the Semi-Arid of the Rio Grande do Norte State, Brazil: Case Study of the Sub-Basin of the Cobras River

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Several studies were carried out and drought coexistence technologies were developed to deal with the problem of drought in semiarid regions, such as the construction of underground dams, which became a tool for rural development, mainly for family agriculture. However, there are still scarce informations regarding technical studies on the water security level of underground dams, especially about trace metal contamination due to the use and agricultural occupation of the soils downstream of the dams. In this work, the level of contamination of trace metals in waters of underground dams, during two hydrological years, was evaluated around of the sub-basin of the Cobras river, in the Rio Grande do Norte state, Brazil. The analysis of the results indicated that the water samples stored in the Alexandre and Ginaldo underground dams are within the permitted drinking patterns and did not suffer, on the other hand, any alteration in their quality that requires treatment for human consumption, fitting into Class 1. Most of the samples from the waters of the Boa Vista and Ademar dams are above the maximum allowable value for iron (Fe), lead (Pb), chromium (Cr), and nickel (Ni), requiring a differentiated treatment for human consumption, and can be classified as Class 2. The probable contamination of the waters stored in the underground dams may be of geological origin, since the largest accumulation of trace metals occurred in the lower area of the river course greater drained area, leading to believe that the metals come from the rock weathering that make up the geological framework of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agência Nacional de Águas – ANA. (2005). Panorama da Qualidade das Águas Subterrâneas no Brasil. http://www.ana.gov.br/sprtew/recursoshidricos.asp. Acessed 15 july 2016.

  • Baltar, A. M., & Azevedo, L. G. T. (2003). Revista Brasileira de Recursos Hídricos, 8(4), 5–24.

    Article  Google Scholar 

  • Batezelli, A. (2010). Arcabouço tectono-estratigráfico e evolução das Bacias Caiuá e Bauru no sudeste brasileiro. Revista Brasileira de Geociencias, 40(2), 265–285.

    Article  Google Scholar 

  • Bertolo, R., Bourotte, C., Marcolan, L., Oliveira, S., & Hirata, R. (2011). Anomalous content of chromium in a cretaceous sandstone aquifer of the Bauru Basin, state of São Paulo, Brazil. Journal of South American Earth Sciences, 31(1), 69–80.

    Article  CAS  Google Scholar 

  • Blackburn, D. M., Montenegro, S. M. G. L., Montenegro, A. A., Cirilo, J. A., Costa Netto, M. L., & Maia, A. Z. (2003). Uso da água em um sistema de barragem subterrânea em Belo Jardim - PE. Juazeiro: ABCMAC.

    Google Scholar 

  • Brasil. Portaria n° 2.914, de 12 de dezembro de 2011. http://www.mpf.mp.br/atuacao-tematica/ccr4/dados-da-atuacao/projetos/qualidade-da-agua/legislacao/portarias/portaria-no-2914-de-12-de-dezembro-de-2011/view. Acessed 20 july 2016.

  • Charlet, L., Chapron, Y., Faller, P., Kirsch, R., Stone, A. T., & Baveye, P. C. (2012). Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coordination Chemistry Reviews, 256(19–20), 2147–2163.

    Article  CAS  Google Scholar 

  • Chianca, C. G. C., Silva, C. K., & Souza, A. D. (2019). Qualidade da água de barragens subterrâneas do município de Caraúbas/RN. Maceió: ABES.

    Google Scholar 

  • Companhia Ambiental do Estado de São Paulo – CETESB. (2012). Ficha de Informação Toxicológica – Crômio e seus compostos. São Paulo: Cetesb.

    Google Scholar 

  • Conselho Nacional do Meio Ambiente - CONAMA. (2005). Resolução n° 357, de 17 de março de 2005. Brasil: Conama.

    Google Scholar 

  • El-Hames, A. S. (2011). Determination of the transient water table rise behind constructed underground dam. Arabian Journal of Geosciences, 5(6), 1359–1366.

    Article  Google Scholar 

  • Empresa de Pesquisa Agropecuária do RN - EMPARN. (2009). Caracterização dos recursos naturais da bacia do Rio Cobra, município de Parelhas-RN. Natal: Emparn.

    Google Scholar 

  • Feitosa, F. A. C., Manoel Filho, J., Feitosa, E. C., & Demetrio, J. G. A. (2008). Serviço geológico do Brasil - CPRM. Hidrogeologia: conceitos e aplicações. Rio de Janeiro: CPRM LABHID.

    Google Scholar 

  • Gonzalez, K. R. (2016). Toxicologia do Níquel. Revista Intertox de Toxicologia Risco Ambiental e Sociedade, 9(2), 30–54.

    Article  Google Scholar 

  • Lima, A. O., Dias, N. S., Ferreira Neto, M., Santos, E. J., Rego, P. R. A., & Lima-Filho, F. P. (2013). Barragens subterrâneas no semiárido brasileiro: análise histórica e metodologia de construção. Irriga, 18(2), 200–211.

    Article  Google Scholar 

  • Lima, A. O., Dias, N. S., Lima Filho, F. P., Ferreira Neto, M., Rego, P. R., & Souza, A. M. (2017). Hydrochemistry of alluvial aquifer in the Cobra River sub-basin. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 785–790. https://doi.org/10.1590/1807-1929/agriambi.v21n11p785-790.

    Article  Google Scholar 

  • Lima, A. O., Lima-Filho, F. P., Dias, N. S., Reis Júnior, J. A., & Sousa, A. M. (2018). GPR 3d profile of the adequateness of underground dams in a sub-watershed of the Brazilian semiarid. Revista Caatinga, 31(2), 523–531. https://doi.org/10.1590/1983-21252018v31n230rc.

    Article  Google Scholar 

  • Lollar, B. S. (2005). Environmental geochemistry. Oxford: Elsevier.

    Google Scholar 

  • Mondal, N. C., & Singh, V. P. (2011). Hydrochemical analysis of salinization for a tannery belt in southern India. Journal of Hydrology, 405(3–4), 235–247. https://doi.org/10.1016/j.jhydrol.2011.05.058.

    Article  CAS  Google Scholar 

  • Moreira, R. M., & Moreira, J. C. (2004). Effects of lead exposure on the human body and health implications. Revista Panamerivana de Salud Pública, 15(2), 119–129.

    Article  Google Scholar 

  • Muniz, D. H. F., & Oliveira Filho, E. C. (2006). Metais pesados provenientes de rejeitos de mineração e seus efeitos sobre a saúde e o meio ambiente. Universitas: Ciências da Saúde, 4(1–2), 83–100.

    Google Scholar 

  • Nascimento, M. A. L., Antunes, A. F., Galindo, A. C., Sá, E. F. J., & Souza, Z. S. (2000). Geochemical signatures of the Brasiliano-age plutonism in the Seridó belt, northeastern Borborema Province (NE Brazil). Revista Brasileira de Geociêcnias, 30(161–164), 2000. https://doi.org/10.25249/0375-7536.2000301161164.

    Article  Google Scholar 

  • Otero, N., Vitoria, L., Soler, A., & Canals, A. (2005). Fertiliser characterisation: Major, trace and rare earth elements. Applied Geochemistry, 20, 1473–1488. https://doi.org/10.1016/j.apgeochem.2005.04.002.

    Article  CAS  Google Scholar 

  • Perez-Marin, A. M., Cavalcante, A. M. B., Medeiros, S. S., Tinôco, L. B. M., & Salcedo, I. H. (2012). Núcleos de desertificação no semiárido brasileiro: ocorrência natural ou antrópica? Parcerias Estratégicas, 17, 87–106.

    Google Scholar 

  • Sá, J. E. F., Trindade, R. I. F., Holanda, M. H. B. M., Araújo, J. M. M., Galindo, A. C., Amaro, V. E., Souza, Z. S., Vigneresse, J. L., & Lardeaux, J. M. (1999). Brasiliano syntectonic alkaline granite emplaced in a strike slip/extensional setting (eastern Seridó Belt, NE Brazil). Anais Academia Brasileira de Ciências, 71, 17–27.

    Google Scholar 

  • Santos, S. M., Paiva, A. L. R., & Silva, V. F. (2016). Qualidade da Água em Barragens Subterrâneas no semiárido. Revista Brasileira de Agricultura Irrigada, 10(3), 651–662. https://doi.org/10.7127/RBAI.V10N300394.

    Article  Google Scholar 

  • Senthilkumar, M., & Elango, L. (2011). Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin, southern India. Hydrogeology Journal, 19, 917–928. https://doi.org/10.1007/s10040-011-0735-0.

    Article  Google Scholar 

  • Shadeed, S., & Lange, J. (2010). Rainwater harvesting to alleviate water scarcity in dry conditions: a case study in Faria catchment, Palestine. Water Science and Engineering, 3, 32–143. https://doi.org/10.3882/j.issn.1674-2370.2010.02.002.

    Article  Google Scholar 

  • Uechi, D. A., Gabas, S. G., & Lastoria, G. (2017). Análise de metais pesados no Sistema Aquífero Bauru em Mato Grosso do Sul. Engenharia Sanitaria e Ambiental, 22(1), 155–167. https://doi.org/10.1590/s1413-41522016142430.

    Article  Google Scholar 

  • World Health Organization – WHO. (2011). Guidelines for drinking-water quality. Geneva: WHO.

    Google Scholar 

  • Zoby, J. L. G. (2008). Panorama da qualidade das águas subterrâneas no Brasil. Revista Águas Subterrâneas, Natal, Supl. XV Congresso Brasileiro de Águas Subterrâneas, 1-20. https://aguassubterraneas.abas.org/asubterraneas/article/view/23802/15867.

Download references

Acknowledgments

This study acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting scholarships to the authors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alexandre de Oliveira Lima,, Francisco Pinheiro Lima Filho, and Yago Leopoldo Eleuterio Gurgel de Sousa. The first draft of the manuscript was written by Alexandre de Oliveira Lima, Nildo da Silva Dias, Cleyton dos Santos Fernandes, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hozano de Souza Lemos Neto.

Ethics declarations

Confict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Lima, A., da Silva Dias, N., dos Santos Fernandes, C. et al. Concentration of Traces Metals in Underground Dams in the Semi-Arid of the Rio Grande do Norte State, Brazil: Case Study of the Sub-Basin of the Cobras River. Water Air Soil Pollut 231, 178 (2020). https://doi.org/10.1007/s11270-020-04505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04505-1

Keywords

Navigation