Skip to main content
Log in

Application of Fuzzy Logic Techniques for Biogeochemical Characterization of Dams Affected by Acid Mine Drainage (AMD) Processes in the Iberian Pyrite Belt (IPB), Spain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water is one of the receptors media more affected by the environmental impacts, especially caused by mining sulfides exploitation. Acid mine drainage (AMD) is the main problem associated with these mining operations, producing extremely high impacts, and in many cases irreversible, still remaining nowadays. Diatoms, are the taxonomic algal group most used in environmental studies, to assess the water quality of rivers. From a monitoring perspective, the diagnosis of AMD contamination through the use of diatoms has proved to be an effective ecological tool to assess the impact and select the preventive and corrective measures more adequate to treat these impacted sites. In the present work, the existing relationships between biological and physicochemical indicators of acid mine drainage processes (AMD) in all the reservoirs affected by AMD in the Iberian Pyrite Belt (IPB) were studied through the use of fuzzy logic and data mining techniques that in contrast to the classic statistical treatments. The fuzzy rules show the relationship between biological and physical-chemical indicators, demonstrating the presence of a perfect correlation in all cases; thus, the numbers of species and pH have the same behavior, and inverse to that presented by the percentage of Pinnularia and the metallic charge and sulfates. These techniques improve the work considerably and make easier the knowledge of the involved processes, allowing a better discrimination of the diatoms responses to the stimuli caused by the hydrochemical changes imposed by the processes affecting water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Branco, D., Lima, A., Almeida, S., & Figueira, E. (2010). Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Aquatic Toxicology, 99, 109–117.

    Article  CAS  Google Scholar 

  • Ceron, J. C., Grande, J. A., de la Torre, M. L., Borrego, J., Santisteban, M., & Valente, T. (2013). Hydrochemical characterization of an acid mine drainage-water reservoir affected: the Sancho Dam (Huelva, SW Spain). Hydrological Sciences Journal, 59(6), 1213–1224. https://doi.org/10.1080/02626667.2013.834341.

  • Das, B. K., Roy, A., Koschorreck, M., Maldal, S., Wendt-Potthoff, K., & Bhattacharya, J. (2009). Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Research, 43, 883–894.

    Article  CAS  Google Scholar 

  • Delgado, C., Pardo, I., & García, L. (2010). A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia, 644, 371–384.

    Article  CAS  Google Scholar 

  • Duong, T., Morin, S., Coste, M., Herlory, O., Feurtet-Mazel, A., & Boudou, A. (2010). Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Science of the Total Environment, 408, 552–562.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, E., Almeida, S. F. P., Nunes, M. L., Luís, A. T., Borg, F., & Hedlund, M. (2009). Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Science of the Total Environment, 407, 5620–5636. https://doi.org/10.1016/j.scitotenv.2009.06.047.

    Article  CAS  Google Scholar 

  • Fukuyama, Y & Sugeno, M. (1989). A new method of choosing the number of clusters for fuzzy means method. In Proceedings of the 5th fuzzy systems symposium, pp 247–250.

  • Gomà, J., Ortiz, R., Cambra, J., & Ector, L. (2004). Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie Milieu, 54, 81–90.

    Google Scholar 

  • Grande, J. A., Andújar, J. M., Aroba, J., de la Torre, M. L., & Beltrán, R. (2005). Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process charcaterization. Journal of Environmental Monitoring, 7, 325–334.

    Article  CAS  Google Scholar 

  • Grande, J. A., Santisteban, M., de la Torre, M. L., Valente, T., & Pérez - Ostalé, E. (2013). Characterisation of AMD pollution in the reservoirs of the Iberian Pyrite Belt. Mine Water and the Environment, 32, 321–330. https://doi.org/10.1007/s10230-013-0236-6.

    Article  CAS  Google Scholar 

  • Grande, J. A., Santisteban, M., de la Torre, M. L., Fortes, J. C., de Miguel, E., Curiel, J., Dávila, J. M., & Bioca, B. (2018). The paradigm of circular mining in the world: the Iberian Pyrite Belt as a potential scenario of interaction. Environmental Earth Sciences, 77, 391. https://doi.org/10.1007/s12665-018-7577-1.

    Article  Google Scholar 

  • Hand, D. J. (1998). Data mining: statistics and more? The American Statistician, 52, 112–118.

    Google Scholar 

  • Hathaway, R. J., & Bezdek, J. C. (1993). Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems, 1, 195–204.

    Article  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31, 108–120.

    Article  Google Scholar 

  • Hoppner, F., & Klawonn, F. (2003). A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Transactions on Fuzzy Systems, 11(5), 682–694.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. New York: Wiley & Sons.

    Google Scholar 

  • Kelly, M. G., & Whitton, B. A. (1998). Biological monitoring of eutrophication in rivers. Hydrobiologia, 384, 55–67.

    Article  Google Scholar 

  • Kelly, M., Juggings, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H., & Jallop, M. (2008). Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology, 53, 403–422.

    Google Scholar 

  • Kelly, M., Bennett, C., Coste, M., Delgado, C., Delmas, F., Denys, L., Ector, L., Fauville, C., Ferreol, M., Golub, M., Jarlman, A., Kahlert, M., Lucey, J., Chathain, B., Pardo, I., Pfister, P., Picinska-Faltynowicz, J., Rosebery, J., Schranz, C., Schaumburg, J., van Dam, H., & Vilbaste, S. (2009). A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia, 621, 169–182.

    Article  Google Scholar 

  • Krammer, K., & y Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae En: Ettl, H., J. Gerloff, H. Heynig y D. Mollenhauer (eds.) Süsswasserflora von Mitteleuropa, Banda 2/1. Gustav Fisher Verlag, Jena. 876 pp.

  • Krammer K, & Lange-Bertalot H. (1988). Süßwasserflora von Mitteleuropa, Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellacea. Vol. 2. Stuttgart, Germany. Gustav Fischer Verlag. pp. 596.

  • Krammer K., & Lange-Bertalot H. (1991) Süßwasserflora von Mitteleuropa, Bacillariophyceae. Centrales, Fragilariaceae, Eunoticeae. Vol. 3. Stuttgart, Germany. Gustav Fischer Verlag. pp. 577.

  • Kwandrans, J., Eloranta, P., Kawecka, B., & Wojtan, K. (1998). Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology, 10, 193–201.

    Article  Google Scholar 

  • Leira, M., & Sabater, S. (2005). Diatom assemblages distribution in Catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research, 39, 73–82.

    Article  CAS  Google Scholar 

  • Luís, A., Teixeira, P., Almeida, S. F. P., Ector, L., Matos, J. X., & Ferreira da Silva, E. A. (2009). Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel mining area (Portugal). Water, Air, and Soil Pollution, 200, 147–167.

    Article  Google Scholar 

  • Luís, A., Teixeira, P., Almeida, S., Matos, J. X., & Da Silva, E. F. (2011). Environmental impacto of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contamined stream sediment and surface water of Corona stream. Science of the Total Environment, 409(20), 4312–4325.

    Article  Google Scholar 

  • Luís, A. T., Novais, M. H., Van de Vijver, B., Almeida, S. F .P., Ferreira da Silva, E. A., Hoffmann, L., & Ector, L., (2012). Pinnularia aljustrelica sp. nov. (Bacillariophyceae), a new diatom species found in acidic waters in the Aljustrel mining area (Portugal), and further observations on the taxonomy, morphology and ecology of P. acidophila HOFMANN et KRAMMER and P. acoricola HUSTEDT. Fottea, 12(1), 27–400.

  • Luís, A., Alexander, A., Almeida, S., Ferreira da Silva, E., & Culp, J. M. (2013). Benthic diatom communities in streams from zinc mining areas in continental (Canada) and Mediterranean climates (Portugal). Water Quality Research Journal of Canada, 48(2), 180–191.

    Article  Google Scholar 

  • Luís, A. T., Duraes, N., Almeida, S. F. P., & Ferreira da Silva, E. (2016). Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). Journal of Environmental Sciences, 42, 215–226.

  • Luís, A. T., Grande, J. A., Davila, J. M., Aroba, J., Duraes, N., Almeida, S. F. P., de la Torrec, M.L., Sarmiento, A.M., Fortes, J. C., Ferreira da Silva, E., Santisteban, M. (2018) Application of fuzzy logic tools for the biogeochemical characterisation of (un)contaminated waters from Aljustrel mining area (South Portugal). Chemosphere, 211, 736–744.

  • Lyew, D., & Sheppard, J. (1997) Efectos de los parámetros físicos de un lecho de grava sobre la actividad de las bacterias reductoras de sulfato en presencia de drenaje ácido de minas. Journal of Chemical Technology & Biotecnología, 70, 223–230.

  • Nixdorf, B., Fyson, A., & Krumbeck, H. (2001). Review: plant life in extremely acidic waters. Environmental and Experimental Botany, 46, 203–211.

    Article  CAS  Google Scholar 

  • Prygiel, J., & Coste, M. (2000). Guide Méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées. NF T 90-354, France. pp. 134.

  • Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., & Romaní, A. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology, 39, 481–489.

    Article  CAS  Google Scholar 

  • Santisteban, M. (2015a). Cuantificación de la carga metálica y sulfatos aportada por procesos AMD a embalses de la Faja Pirítica Ibérica: modelización del proceso y velocidades de colmatación. Tesis doctoral. Universidad de Huelva.

  • Santisteban, M. (2015b). Incidence of AMD processes in the hydrochemistry of affected reservoirs in the Iberian Pyrite Belt. Tesis Doctoral. Universidad de Huelva.

  • Santisteban, M., Grande, J. A., de la Torre, M. L., Valente, T., & Cerón, J. C. (2013). Acid mine drainage in semi-arid regions: the extent of the problem in the waters of reservoirs in the Iberian Pyrite Belt (SW Spain). Hydrology Research. https://doi.org/10.2166/nh2013086.

  • Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modelling. IEEE Transactions on Fuzzy Systems, 1, 7–31. https://doi.org/10.1109/TFUZZ.1993.390281.

    Article  Google Scholar 

  • USEPA. (1994). Acid mine drainage prediction. U.S. Environmental Protection Agency. Office of Solid Waste. EPA530-R-94-036.

  • Valente, T., Grande, J. A., de la Torre, M. L., Santisteban, M., & Cerón, J. C. (2013). Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Applied Geochemistry, 39, 11–25.

    Article  CAS  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Santisteban.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, M.J., Santisteban, M., Aroba, J. et al. Application of Fuzzy Logic Techniques for Biogeochemical Characterization of Dams Affected by Acid Mine Drainage (AMD) Processes in the Iberian Pyrite Belt (IPB), Spain. Water Air Soil Pollut 231, 142 (2020). https://doi.org/10.1007/s11270-020-04501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04501-5

Keywords

Navigation