Efficiency of Heterogeneous Photocatalysis with Titanium Dioxide in the Alteration of Physicochemical and Toxicological Parameters of Textile Effluent

Abstract

Textile industry is responsible for producing a large amount of effluent. The objective of the present study was to treat the raw effluent of a textile manufacturer through heterogeneous photocatalysis (TiO2/UVsolar). Four types of effluents were evaluated: raw (RE), treated by the manufacturer (MTE), and exposed to photocatalysis in the presence (PTETi) and absence (PTE) of titanium dioxide (TiO2). They were evaluated for physical, chemical, and toxicological parameters. In regard to dissolved oxygen (DO) contents, MTE, PTETi, and PTE effluents increased values when compared with RE effluent. Color degradation was more efficient by MTE effluent, but the chemical oxygen demand (COD) values of the treated effluents were not in accordance with Brazilian norms. Besides that, the toxicity test with Allium cepa L. shows cytotoxicity by MTE (24 and 48 h) effluent. PTETi and PTE (24 h) effluents did not show cytotoxicity, but PTETi-48 h showed a significant decrease in mitotic index. The immobility/mortality test with Artemia salina L. showed toxicity of the RE and MTE effluents in concentrations of 100% and 50%. In the case of the phototreated effluents, there was only toxicity in the concentration of 100%. Thus, so generally, photocatalytic treatments were more efficient than the treatment applied by the manufacturer; however, it is necessary to improve a new stage in the treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. Journal of Environmental Chemical Engineering, 7(5), 1–17 https://doi.org/10.1016/j.jece.2019.103248.

    Article  Google Scholar 

  2. Alvim, L. B., Kummrow, F., Beijo, L. A., Lima, C. A. A., & Barbosa, S. (2011). Evaluation of cytotoxotoxicity of textile effluents using Allium cepa L. Ambi-Agua, 6(2), 255–265. https://doi.org/10.4136/ambi-agua.198.

    Article  Google Scholar 

  3. APHA/AWWA/WEF. (1998). Standard Methods for the examination of water and wastewater (20th ed.). Washington: APHA.

    Google Scholar 

  4. Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407, 1461–1468. https://doi.org/10.1016/j.scitotenv.2008.10.053.

    CAS  Article  Google Scholar 

  5. Bhat, S. A., Cui, G., Li, F., & Vig, A. P. (2019). Biomonitoring of genotoxicity of industrial wastes using plant bioassays. Bioresource Technology Reports, 6, 207–216. https://doi.org/10.1016/j.biteb.2019.03.005.

    Article  Google Scholar 

  6. Bilal, M., Asgher, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. International Journal of Biological Macromolecules, 89, 181–189. https://doi.org/10.1016/j.ijbiomac.2016.04.075.

    CAS  Article  Google Scholar 

  7. Cardoso, J. C., Bessegato, G. G., & Zanoni, M. V. B. (2016). Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Research, 98, 39–46. https://doi.org/10.1016/j.watres.2016.04.004.

    CAS  Article  Google Scholar 

  8. Chandanshive, V. V., Rane, N. R., Gholave, A. R., Patil, S. M., Jeon, B. H., & Govindwar, S. P. (2016). Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environmental Research, 150, 88–96. https://doi.org/10.1016/j.envres.2016.05.047.

    CAS  Article  Google Scholar 

  9. Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44, 2997–3027. https://doi.org/10.1016/j.watres.2010.02.039.

    CAS  Article  Google Scholar 

  10. Çifçi, D. I., & Meriç, S. (2015). Optimization of suspended photocatalytic treatment of two biologically treated textile effluents using TiO2 and ZnO catalysts. Global NEST Journal, 17(4), 653–663. https://doi.org/10.30955/gnj.001715.

    Article  Google Scholar 

  11. CONAMA (Conselho Nacional Do Meio Ambiente) (2005) Resolution number 357 of March 17, 2005. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf.

  12. CONAMA (Conselho Nacional Do Meio Ambiente) (2011) Resolution number 430 of May 13, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646.

  13. Costa, C. R., Olivi, P., Botta, C. M. R., & Espindola, E. L. G. (2008). Toxicity in aquatic environments: discussion and evaluation methods. Quim Nova, 31(7), 1820–1830. https://doi.org/10.1590/S0100-40422008000700038.

    CAS  Article  Google Scholar 

  14. Das, L., & Basu, J. K. (2015). Photocatalytic treatment of textile effluent using titania–zirconia nano composite catalyst. Journal of Industrial and Engineering Chemistry, 24, 245–250. https://doi.org/10.1016/j.jiec.2014.09.037.

    CAS  Article  Google Scholar 

  15. Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102, 99–112.

    Article  Google Scholar 

  16. Fiskesjö, G. (1993). The Allium test in wastewater monitoring. Environmental Toxicology and Water Quality, 8, 291–298.

    Article  Google Scholar 

  17. Fuhrmann, M., Richard, G., Quéré, C., Petton, B., & Pernet, F. (2019). Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host. Aquaculture, 503, 167–174. https://doi.org/10.1016/j.aquaculture.2018.12.052.

    CAS  Article  Google Scholar 

  18. Ghaly, A. E., Ananthashankar, R., Alhattab, M., & Ramakrishnan, V. V. (2014). Production, characterization and treatment of textile effluents: a critical review. Journal of Chemical Engineering & Process Technology, 5(1), 1–18. https://doi.org/10.4172/2157-7048.1000182.

    CAS  Article  Google Scholar 

  19. Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Textile dyes. Quím Nova, 23(1), 71–78. https://doi.org/10.1590/S0100-40422000000100013.

    CAS  Article  Google Scholar 

  20. Guerra, R. (2001). Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere, 44(8), 1737–1747. https://doi.org/10.1016/S0045-6535(00)00562-2.

    CAS  Article  Google Scholar 

  21. Hemachandra, C. K., & Pathiratne, A. (2016). Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries. Ecotoxicology and Environmental Safety, 131, 54–64. https://doi.org/10.1016/j.ecoenv.2016.05.010.

    CAS  Article  Google Scholar 

  22. Hund-Rinke, K., & Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science & Pollution Research, 13(4), 225–232. https://doi.org/10.1065/espr2006.06.311.

    CAS  Article  Google Scholar 

  23. Indermühle, C., Puzenat, E., Dappozze, F., Simonet, F., Lamaa, L., Peruchon, L., Brochier, C., & Guillard, C. (2018). Photocatalytic activity of titania deposited on luminous textiles for water treatment. Journal of Photochemistry & Photobiology A: Chemistry, 361, 67–75. https://doi.org/10.1016/j.jphotochem.2018.04.047.

    CAS  Article  Google Scholar 

  24. Maculan, J. L. (2013). Application of advanced oxidative processes in the treatment of milk effluent using heterogeneous photocatalysis (TiO 2 /UVsolar). Monograph: Federal Technological University of Parana, Francisco Beltrão.

    Google Scholar 

  25. Mahmoodi, N. M., & Arami, M. (2009). Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology. B, 94, 20–24. https://doi.org/10.1016/j.jphotobiol.2008.09.004.

    CAS  Article  Google Scholar 

  26. Moraes, S. G. D., Freire, R. S., & Durán, N. (2000). Degradation and toxicity reduction of textile efluent by combined photocatalytic and ozonation processes. Chemosphere, 40, 369–373. https://doi.org/10.1016/S0045-6535(99)00239-8.

    Article  Google Scholar 

  27. Morali, E. K., Uzal, N., & Yetis, U. (2016). Ozonation pre and post-treatment of denim textile mill effluents: effect of cleaner production measures. Journal of Cleaner Production, 137, 1–9. https://doi.org/10.1016/j.jclepro.2016.07.059.

    CAS  Article  Google Scholar 

  28. Noreen, M., Shahid, M., Iqbal, M., Nisar, J., & Abbas, M. (2017). Measurement of cytotoxicity and heavy metal load in drains water receiving textile effluents and drinking water in vicinity of drains. Measurement, 109, 88–99. https://doi.org/10.1016/j.measurement.2017.05.030.

    Article  Google Scholar 

  29. Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40, 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019.

    CAS  Article  Google Scholar 

  30. Santos, V. L. V. F., Barcellos, I. O., & Piccoli, H. H. (2017). Pre-targeting of textile materials with ozone and evaluation of its surface, physical and dyeing properties. Review of Materials, 22(1), 1–14. https://doi.org/10.1590/s1517-707620170001.0122.

    CAS  Article  Google Scholar 

  31. Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., & Stephen, A. (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science, 452, 126–133. https://doi.org/10.1016/j.jcis.2015.04.035.

    CAS  Article  Google Scholar 

  32. SEMA/IAP (2008) Secretaria do Meio Ambiente e Recursos Hídricos do Paraná e Instituto Ambiental do Paraná. 2008. http://www.mma.gov.br/port/conama/processos/EFABF603/Prop.ResolGOV_PR_2oGToGTLancamentoEfluen_17e18nov08.pdf.

  33. Silva, M. R. A., Oliveira, M. C., & Nogueira, R. F. P. (2004). Study of the application of the solar photo-Fenton process in the effluent degradation of the paint industry. Ecletica Química, 29(2), 19–26. https://doi.org/10.1590/S0100-46702004000200003.

    Article  Google Scholar 

  34. Villarroel, M. J., Sancho, E., Ferrando, M. D., & Andreu, E. (2003). Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere, 53(8), 857–864. https://doi.org/10.1016/S0045-6535(03)00546-0.

    CAS  Article  Google Scholar 

  35. Windler, L., Lorenz, C., Von Goetz, N., Hungerbühler, K., Amberg, M., Heuberger, M., & Nowack, B. (2012). Release of titanium dioxide from textiles during washing. Environmental Science & Technology, 46, 8181–8188. https://doi.org/10.1021/es301633b.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge The Federal University of Technology - Paraná and the Araucária Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisângela Düsman.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fontana, M., Tonial, I.B., Pokrywiecki, T.S. et al. Efficiency of Heterogeneous Photocatalysis with Titanium Dioxide in the Alteration of Physicochemical and Toxicological Parameters of Textile Effluent. Water Air Soil Pollut 231, 24 (2020). https://doi.org/10.1007/s11270-019-4392-6

Download citation

Keywords

  • Allium cepa L.
  • Artemia salina L.
  • Textile effluents
  • Phototreatment
  • Toxicity
  • Treatment