Optimization Design of Groundwater Pollution Monitoring Scheme and Inverse Identification of Pollution Source Parameters Using Bayes’ Theorem

Abstract

In the process of identifying groundwater pollution sources, in order to solve the problem that the monitoring data of monitoring wells was insufficient or the correlation between monitoring data and model parameters was weak, a monitoring well optimization method based on Bayesian formula and information entropy was proposed. Two-dimensional phreatic groundwater solute transport model was built and solved by using GMS software. To reduce the computational load of calling the numerical model repeatedly in the optimization design of the monitoring schemes and the identification process of the pollution sources, the Kriging method was used to establish the surrogate model of the numerical model. Under the condition of single well monitoring and determined monitoring frequency, with the target of optimization of monitoring position number D and monitoring time interval ∆t, both the single-objective monitoring scheme with the minimum information entropy of the model parameter posterior distribution and the multi-objective monitoring scheme with the minimum information entropy and the shortest monitoring time were optimized respectively. According to the above-optimized monitoring schemes, the delayed rejection adaptive Metropolis algorithm was used to identify the pollution source parameters. The case study results showed that under the condition of pre-set single well monitoring with monitoring frequency of 10 times, the single-objective optimized monitoring scheme was D = 37 and Δt = 20 days. Under this monitoring scheme, the mean errors of inversion pollution source parameters α = (XS, YS, T1, T2, QS) were 0.09%, 0.4%, 4.72%, 2.43%, and 9.29%, respectively. The multi-objective optimized monitoring scheme was D = 37 and Δt = 2 days. Under this monitoring scheme, the mean errors of the inversion parameters α = (XS, YS, T1, T2, QS) were 12.76%, 3.77%, 5.13%, 1.36%, and 7.68%, respectively. Compared with the monitoring scheme based on the single-objective optimization, although the inversion mean error of the five parameters based on the multi-objective optimized monitoring scheme increased by 2.75%, the monitoring time significantly reduced from 180 to 18 days.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Carrera, J., & Neuman, S. P. (1986). Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res, 22(2), 211–227. https://doi.org/10.1029/wr022i002p00211.

    Article  Google Scholar 

  2. Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantication and Bayesian inversion of a regional groundwater fow model. J Hydrol, 557, 826–837. https://doi.org/10.1016/j.jhydrol.2017.12.071.

    Article  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., & Meyarivant, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6(2), 182–197. https://doi.org/10.1109/4235.996017.

    Article  Google Scholar 

  4. Dougherty, D. E., & Marryott, R. A. (1991). Optimal groundwater management: 1. Simulated annealing. Water Resour Res, 27(10), 2493–2508. https://doi.org/10.1029/91wr01468.

    Article  Google Scholar 

  5. Gabriela, C., Sarma, S. V., Eden, U. T., & Brown, E. N. (2008). A signal-to-noise ratio estimator for generalized linear model systems. Lect Notes Eng Computer Sci, 2171(1), 1063–1069 http://www.iaeng.org/publication/WCE2008/WCE2008_pp1063-1069.pdf.

    Google Scholar 

  6. Gao. Y. (2008). Optimization methods based on Kriging surrogate model and their application in injection molding. Dalian: Dalian University of Technology.

  7. Gelman, A. G., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Stat Sci, 7, 457–472. https://doi.org/10.1214/ss/1177011136.

    Article  Google Scholar 

  8. Giacobbo, F., Marseguerra, M., & Zio, E. (2002). Solving the inverse problem of parameter estimation by genetic algorithms: the case of a groundwater contaminant transport model. Ann Nucl Energy, 29(8), 967–981. https://doi.org/10.1016/S0306-4549(01)00084-6.

    CAS  Article  Google Scholar 

  9. Haario, H., Saksman, E., & Tamminent, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223–242. https://doi.org/10.2307/3318737.

    Article  Google Scholar 

  10. Haario, H., Laine, M., & Mira, A. (2006). DRAM: efficient adaptive MCMC. Stat Comput, 16(4), 339–354. https://doi.org/10.1007/s11222-006-9438-0.

    Article  Google Scholar 

  11. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.2307/2334940.

    Article  Google Scholar 

  12. Hickernell, F. A. (1998). A generalized discrepancy and quadrature error bound. Math Comput, 67(221), 299–322. https://doi.org/10.2307/2584985.

    Article  Google Scholar 

  13. Huan, X., & Marzouk, Y. M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J Comput Phys, 232(1), 288–317. https://doi.org/10.1016/j.jcp.2012.08.013.

    CAS  Article  Google Scholar 

  14. Knill, D. L., Giunta, A. A., Baker, C. A., Grossman, B., Mason, W., Haftka, R., & Watson, L. T. (1999). Response surface models combining linear and Euler aerodynamics for supersonic transport design. J Aircr, 36(1), 75–86. https://doi.org/10.2514/2.2415.

    Article  Google Scholar 

  15. Kuhnt, S., & Steinberg, D. M. (2010). Design and analysis of computer experiments. AStA AdvStat Anal, 94(4), 307–309. https://doi.org/10.1007/s10182-010-0143-0.

    Article  Google Scholar 

  16. Lenhart, L., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Phys Chem Earth, 27, 645–654. https://doi.org/10.1016/S1474-7065(02)00049-9.

    Article  Google Scholar 

  17. Lindley, D. V. (1956). On a measure of the information provided by an experiment. Ann Math Stat, 27(4), 986–1005. https://doi.org/10.1214/aoms/1177728069.

    Article  Google Scholar 

  18. Lophaven, S. N., Nielsen, H. B., & Sondergaard, J. (2002). Dace: a MATLAB Kriging toolbox. Kongens Lyngby, Technical University of Denmark: Technical Report No. IMM-TR-2002-12.

  19. Luo, J., Ji, Y., & Lu, W. (2019). Comparison of surrogate models based on different sampling methods for groundwater remediation. J Water Resour Plan Manag, 145(5), 04019015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001062.

    Article  Google Scholar 

  20. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., & Teller, A. H. (1953). Equation of state calculations by fast computing machines. J Chem Phys, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114.

    CAS  Article  Google Scholar 

  21. Mira, A. (2002). Ordering and improving the performance of Monte Carlo Markov chains. Stat Sci, 16, 340–350. https://doi.org/10.1214/ss/1015346319.

    Article  Google Scholar 

  22. Roberts, C. P., & Casella, G. (2004). Monte Carlo statistical methods (second edition). Springer https://doi.org/10.1007/978-1-4757-4145-2.

  23. Ruzek, B., & Kvasnicka, M. (2001). Differential evolution algorithm in the earthquake hypocenter location. Pure Appl Geophys, 158, 667–693. https://doi.org/10.1007/PL00001199.

    Article  Google Scholar 

  24. Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst Tech J, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    Article  Google Scholar 

  25. Snodgrass, M. F., & Kitanidis, P. K. (1997). A geostatistical approach to contaminant source identification. Water Resour Res, 33(4), 537–546. https://doi.org/10.1029/96WR03753.

    CAS  Article  Google Scholar 

  26. Sohn, M. D., Small, M. J., & Pantazidou, M. (2000). Reducing uncertainty in site characterization using Bayes Monte Carlo methods. J Environ Eng-ASCE, 126(10), 893–902. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(893).

    CAS  Article  Google Scholar 

  27. Tierney, L., & Mira, A. (1999). Some adaptive Monte Carlo methods for bayesian inference. Stat Med, 18, 2507–2515. https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2507::aid-sim272>3.

    CAS  Article  Google Scholar 

  28. Wang, X., Zhang, D., & Chen, L. (2018). Real-time monitoring of pollutant diffusion states and source using fuzzy adaptive Kalman filter. Water Air Soil Pollut, 229(7), 238. https://doi.org/10.1007/s11270-018-3885-z.

    CAS  Article  Google Scholar 

  29. Wei, G., Chi, Z., Yu, L., Liu, H., & Zhou, H. (2016). Source identification of sudden contamination based on the parameter uncertainty analysis. J Hydroinf, 18(6), 919–927. https://doi.org/10.2166/hydro.2016.002.

    Article  Google Scholar 

  30. Zhang, J. (2017). Bayesian monitoring design and parameter inversion for groundwater contaminant source identification. Hangzhou: Zhejiang University- Thesis Doctorate.

  31. Zhang, S., Liu, H., Qiang, J., Gao, H., Galar, D., & Lin, J. (2019). Optimization of well position and sampling frequency for groundwater monitoring and inverse identification of contamination source conditions using Bayes’ Theorem. Comput Model Eng Sci, 119(2), 373–394. https://doi.org/10.32604/cmes.2019.03825.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Qiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Qiang, J., Liu, H. et al. Optimization Design of Groundwater Pollution Monitoring Scheme and Inverse Identification of Pollution Source Parameters Using Bayes’ Theorem. Water Air Soil Pollut 231, 27 (2020). https://doi.org/10.1007/s11270-019-4369-5

Download citation

Keywords

  • Monitoring well optimization
  • Pollution source identification
  • Bayes’ theorem
  • Information entropy
  • Kriging method
  • Delayed rejection adaptive Metropolis algorithm
  • Latin hypercube sampling