Skip to main content
Log in

Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Imidacloprid (1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine (CAS No: 138261–41-3), neonicotinoid insecticide, and agricultural plant protectants were applied as seed and soil treatments. The aim of the present study is to determine the effects of sub-lethal imidacloprid concentrations on the histopathology and oxidative stress parameters with lipid peroxidation (LPO) to standard non-target test organism, tilapia (Oreochromis niloticus). 50 and 100 mgL−1 imidacloprid concentrations were chosen for experimental groups with control group. Fish were stocked in 60 L glass aquaria, maintained in aerated and dechlorinated tap water. The mean weight and length of tilapia were 37.78 ± 2.19 g and 12.98 ± 0.22 cm, respectively. After 24 and 96 h exposure to sub-lethal imidacloprid concentrations, the fish were sacrificed; tissue samples of gill and liver were snap frozen in liquid nitrogen for oxidative stress parameters and LPO assays, fixed (buffered 10% formalin) for histopathology. After exposure to sub-lethal imidacloprid, LPO was induced in both tissues. MDA levels were increased in both tissues, while GSH levels were reduced at the high concentration of imidacloprid in the gill tissues after 96 h and both concentrations in the liver tissues (P < 0.05). There were no significant differences for antioxidant enzymes CAT, SOD and GPx between exposed and control groups (P > 0.05). Gill tissues revealed hyperaemia, epithelial lifting, fusion of secondary lamellae and telangiectasia, whereas hyperaemia, mononuclear cell infiltration vacuolization of hepatocytes and hydropic degeneration were observed in liver tissues. Imidacloprid is very toxic to the non-target species in the aquatic ecosystem even at sub-lethal concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agamy, E. (2013). Impact of laboratory exposure to light Arabian crude oil, dispersed oil and dispersant on the gills of the juvenile brown spotted grouper (Epinephelus chlorostigma): A histopathological study. Marine Environmental Research, 86, 46–55. https://doi.org/10.1016/j.marenvres.2013.02.010.

    Article  CAS  Google Scholar 

  • Ansoar-Rodriguez, Y., Christofoletti, C. A., Correia, J. E., de Souza, R. B., Moreira-de-Sousa, C., de Castro Marcato, A. C., et al. (2016). Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid: Histopathology and heat shock protein in situ localization. Journal of Environmental Science and Health Part B, 5, 881–887. https://doi.org/10.1080/03601234.2016.1240559.

    Article  CAS  Google Scholar 

  • Aykaç, G., Uysal, M., Yalçın, A. S., Koçak-Toker, N., Sıvas, A., & Öz, H. (1985). The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology, 36, 71–76. https://doi.org/10.1016/0300483X(85)90008-3.

    Article  Google Scholar 

  • Baskaran, S., Kookana, R. S., & Naidu, R. (1997). Determination of the insecticide imidacloprid in water and soil using high-performance liquid chromatography. Journal of Chromatography A, 787, 271–275.

    Article  CAS  Google Scholar 

  • Benli, A. C. K., Köksal, G., & Özkul, A. (2008). Sub-lethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 72, 1355–1358. https://doi.org/10.1016/j.chemosphere.2008.04.037.

    Article  CAS  Google Scholar 

  • Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. (1999). Histopathology in fish: Proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22, 25–33. https://doi.org/10.1046/j.1365-2761.1999.00134.x.

    Article  Google Scholar 

  • Boran, H., Capkın, E., Altınok, I., & Terzi, E. (2012). Assessment of acute toxicity and histopathology of the fungicide captan in rainbow trout. Experimental and Toxicologic Pathology, 64, 175–179. https://doi.org/10.1016/j.etp.2010.08.003.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Casinii, A. F., Ferrali, M., Pompella, A., et al. (1986). Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. The American Journal of Pathology, 123, 520–531.

    Google Scholar 

  • Chao, S. L., & Casida, J. E. (1997). Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pesticide Biochemistry and Physiology, 58, 77–78. https://doi.org/10.1016/j.cbpc.2018.01.002.

    Article  CAS  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  Google Scholar 

  • Erkmen, B., Benli, A. Ç. K., Ağuş, H. H., Yıldırım, Z., Mert, R., & ve Erkoç, F. (2017). Impact of sub-lethal di-n-butyl phthalate on the aquaculture fish species Nile tilapia (Oreochromis niloticus): Histopathology and oxidative stress assessment. Aquaculture Research, 48, 675–685.

    Article  CAS  Google Scholar 

  • Frew, J. A., Brown, J. T., Fitzsimmons, P. N., Hoffman, A. D., Sadilek, M., Grue, C. E., et al. (2018). Toxicokinetics of the neonicotinoid insecticide imidacloprid in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry Physiology Part C, 205, 34–42.

    CAS  Google Scholar 

  • Ge, W., Yan, S., Wang, J., Zhu, L., Chen, A., & Wang, J. (2015). Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). Journal of Agricultural Food and Chemistry, 63, 1856–1862. https://doi.org/10.1021/jf504895h.

    Article  CAS  Google Scholar 

  • Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5.

    Article  CAS  Google Scholar 

  • Jemec, A., Tisler, T., Drobne, D., Sepcic, K., Fournier, D., & Trebse, P. (2007). Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere, 68, 1408–1418. https://doi.org/10.1016/j.chemosphere.2007.04.015.

    Article  CAS  Google Scholar 

  • Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agricultural Food and Chemistry, 59, 2897–2908. https://doi.org/10.1021/jf101303g.

    Article  CAS  Google Scholar 

  • Kurtel, H., Granger, D. N., Tso, P., et al. (1992). Vulnerability of intestinal interstitial fluid to oxidant stress. American Journal of Physiology, 26(263), G573–G578. https://doi.org/10.1152/ajpgi.1992.263.4.G573.

    Article  Google Scholar 

  • Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630–648. https://doi.org/10.1139/f85-083.

    Article  CAS  Google Scholar 

  • Meister, R. T. (2000). Farm chemical handbook 86. Willoughby: Meister Publishing Company.

    Google Scholar 

  • Menon, M., & Mohanraj, R. (2018). Toxicity of neonicotinoid pesticide imidacloprid and impediment of ecosystem services. Russian Agricultural Sciences, 44, 171–176.

    Article  Google Scholar 

  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., et al. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environmental International, 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024.

    Article  CAS  Google Scholar 

  • Munoz, L., Weber, P., Deressler, W., Baldisseretto, B., & Vigliano, F. A. (2015). Histopathological biomarkers in juvenile silver catfish (Rhamdia quelen) exposed to a sub-lethal lead concentration. Ecotoxicology and Environmental Safety, 113, 241–247. https://doi.org/10.1016/j.ecoenv.2014.11.036.

    Article  CAS  Google Scholar 

  • Nnadi, J. U., Dimelu, I. N., Nwani, S. I., et al. (2018). Biometric variations and oxidative stress responses in juvenile Clarias gariepinus exposed to Termex®. African Journal of Aquatic Science, 43, 27–34. https://doi.org/10.2989/16085914.2018.1445615.

    Article  CAS  Google Scholar 

  • Özdemir, S., Altun, S., & Arslan, H. (2018). Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicology Reports, 5, 125–133. https://doi.org/10.1016/j.toxrep.2017.12.019.

    Article  CAS  Google Scholar 

  • Pandya, P., Upadhyay, A., Thakkar, B., & Parikh, P. (2018). Evaluating the toxicological effects of agrochemicals on glucocorticoid receptor and serum cortisol level in Mozambique tilapia. Cogent Biology, 4(1), 1480338. https://doi.org/10.1080/23312025.2018.1480338.

    Article  CAS  Google Scholar 

  • Poulino, M. G., Souza, N. E. S., & Fernandes, M. N. (2012). Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a Neotropical freshwater fish, Prochilodus lineatus. Ecotoxicology and Environmental Safety, 80, 6–13. https://doi.org/10.1016/j.ecoenv.2012.02.001.

    Article  CAS  Google Scholar 

  • Qadir, S., & Iqbal, F. (2016). Effect of sub-lethal concentration of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. The Pakistan Journal of Pharmaceutical Sciences, 29, 2033–2038.

    CAS  Google Scholar 

  • Reiser, S., Schroeder, J. P., Wuertz, S., Kloas, W., & Hanel, R. (2010). Histological and physiological alterations in juvenile turbot (Psetta maxima L.) exposed to sub-lethal concentrations of ozone-produced oxidants in ozonated seawater. Aquaculture, 307, 157–164. https://doi.org/10.1016/j.aquaculture.2010.07.007.

    Article  CAS  Google Scholar 

  • Sanchez-Bayo, F., & Goka, K. (2005). Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes). Aquatic Toxicology, 74, 285–293. https://doi.org/10.1016/j.aquatox.2005.06.003.

    Article  CAS  Google Scholar 

  • Sepici-Dinçel, A., Benli, A. C. K., Selvi, M., Sarıkaya, R., Şahin, D., Özkul, I. A., & Erkoç, F. (2009). Sub-lethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: Biochemical, hematological, histopathological alterations. Ecotoxicology and Environmental Safety, 72, 1433–1439. https://doi.org/10.1016/j.ecoenv.2009.01.008.

    Article  CAS  Google Scholar 

  • Simon-Delso, N., Amaral-Rogers, A., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., et al. (2015). Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y.

    Article  CAS  Google Scholar 

  • Solano, M. L., Montagner, C. C., Vaccari, C., Jardim, W. F., Anselmo-Franci, J. A., Carolino, R. O., et al. (2015). Potential endocrine disruptor activity of drinking water samples. Endocrine Disruptors, 1, e983384. https://doi.org/10.4161/23273747.2014.983384.

    Article  Google Scholar 

  • Tian, X., Yang, W., Wang, D., et al. (2018). Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. Chemosphere, 210, 1006–1012. https://doi.org/10.1016/j.chemosphere.2018.06.083.

    Article  CAS  Google Scholar 

  • Tisler, T., Jemec, A., Mozetic, B., & Trebse, P. (2009). Hazard identification of imidacloprid to aquatic environment. Chemosphere, 76, 907–914. https://doi.org/10.1016/j.chemosphere.2009.05.002.

    Article  CAS  Google Scholar 

  • Vieira, C. E. D., Perez, M. R., Acayaba, R. D., Raimundo, C. C. M., & Martinez, C. B. R. (2018). DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere, 195, 125–134. https://doi.org/10.1016/j.chemosphere.2017.12.077.

    Article  CAS  Google Scholar 

  • Westlund, P., & Yargeau, V. (2017). Investigation of the presence and endocrine activities of pesticides found in wastewater effluent using yeast-based bioassays. Science of the Total Environment, 607-608, 744–751. https://doi.org/10.1016/j.scitotenv.2017.07.032.

    Article  CAS  Google Scholar 

  • Wu, S., Li, X., Liu, X., Yang, G., An, X., Wang, Q., & Wang, Y. (2018). Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environmental Pollution, 235, 470–481. https://doi.org/10.1016/j.envpol.2017.12.120.

    Article  CAS  Google Scholar 

  • Xu N., Chen P., Liu L., Zeng Y., Zhou H. & Li S. (2014) Effects of combined exposure to 17alpha-ethynylestradiol and dibutyl phthalate on the growth and reproduction of adult male zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 107, 61–70.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Çağlan Günal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günal, A.Ç., Erkmen, B., Paçal, E. et al. Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus). Water Air Soil Pollut 231, 4 (2020). https://doi.org/10.1007/s11270-019-4366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4366-8

Keywords