Skip to main content

Advertisement

Log in

Citric Acid Functionalized Bougainvillea spectabilis: a Novel, Sustainable, and Cost-effective Biosorbent for Removal of Heavy Metal (Pb2+) from Waste Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With increasing concern related to sustainable chemistry, we investigated the biosorption of Pb2+ ions from aqueous medium using an environmental friendly and economic biosorbent Bougainvillea spectabilis (BS). The BS was modified effectively using citric acid by hydrothermal method. The biosorbent(s) was characterized by scanning electron microscope (SEM), energy dispersion X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and point of zero charge (pHpzc). Various process parameters including biosorbent dosage, time of contact, temperature, solution pH, and initial Pb2+ ions concentration were studied in batch mode. Kinetic modeling was performed to evaluate the kinetic data and results showed that the studied process followed the pseudo second order (PSO) kinetics. Equilibrium modeling was done using famous equilibrium models, i.e., Langmuir, Freundlich, Dubinin-Kaganer-Radushkevish, and Temkin in non-linear fashion to evaluate equilibrium data by varying initial Pb2+ ions concentration from 20 to 180 mg/L. Based on RMSE values, Langmuir model fits best. This paper also discusses thermodynamic parameters (i.e., enthalpy, entropy, and free energy) showing that the process was spontaneous and endothermic in nature. In comparison with BS (B. spectabilis), an appreciable increase in uptake capacity of CABS (citric acid modified B. spectabilis) was observed in sequestration of Pb2+ ions from aqueous medium showing advantage of citric acid modification making it industrially favorable and socially acceptable biosorbent for efficient removal of lead from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdolali, A., Guo, W. S., Ngo, H. H., Chen, S. S., Nguyen, N., & Tung, K. L. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresource Technology, 160, 57–66.

    Article  CAS  Google Scholar 

  • Acheampong, M. A., Meulepas, R. J. W., & Lens, P. N. L. (2010). Removal of heavymetals and cyanide from gold mine wastewater. Journal of Chemical Technology and Biotechnology, 85, 590–613.

    Article  CAS  Google Scholar 

  • Ajmal, M., Rao, R. A. K., Anwar, S., Ahmad, J., & Ahmad, R. (2003). Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresource Technology, 86(2), 147–149.

    Article  CAS  Google Scholar 

  • Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020.

    Article  CAS  Google Scholar 

  • Athar, M., Farooq, U., Aslam, M., & Salman, M. (2013). Adsorption of Pb (II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies. Applied Water Science, 3(3), 665–672.

    Article  CAS  Google Scholar 

  • Aydın, H., Bulut, Y., & Yerlikaya, Ç. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87(1), 37–45.

    Article  Google Scholar 

  • Bingöl, D., Hercan, M., Elevli, S., & Kılıç, E. (2012). Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresource Technology, 112, 111–115.

    Article  Google Scholar 

  • Chen, H., Dou, J., & Xu, H. (2017). Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr(III) and biosorption. Applied Surface Science, 425, 728–735. https://doi.org/10.1016/j.apsusc.2017.07.053.

    Article  CAS  Google Scholar 

  • de O. Jorgetto, A., da Silva, A. C. P., Wondracek, M. H. P., Silva, R. I. V., Velini, E. D., Saeki, M. J., et al. (2015). Multilayer adsorption of Cu(II) and Cd(II) over Brazilian orchid tree ( Pata-de-vaca ) and its adsorptive properties. Applied Surface Science, 345, 81–89. https://doi.org/10.1016/j.apsusc.2015.03.142.

    Article  CAS  Google Scholar 

  • Dos Santos, W. N., Cavalcante, D. D., da Silva, E. G. P., das Virgens, C. F., & de Souza Dias, F. (2011). Biosorption of Pb (II) and Cd (II) ions by Agave sisalana (sisal fiber). Microchemical Journal, 97(2), 269–273.

    Article  Google Scholar 

  • Farooq, U., Khan, M. A., Athar, M., & Kozinski, J. A. (2011). Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chemical Engineering Journal, 171(2), 400–410.

    Article  CAS  Google Scholar 

  • Fawzy, M., Nasr, M., Abdel-Gaber, A., & Fadly, S. (2016). Biosorption of Cr (VI) from aqueous solution using agricultural wastes, with artificial intelligence approach. Separation Science and Technology, 51(3), 416–426.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.

    Article  CAS  Google Scholar 

  • Hj Ismail, M. G. B., Weng, C. N., & Zakaria, N. A. (2013). Freundlich isotherm equilibrium equastions in determining effectiveness a low cost absorbent to heavy metal removal in wastewater (Leachate) at Teluk Kitang landfill, Pengkalan Chepa, Kelantan, Malaysia. Journal of Geography and Earth Science, 1(1), 01–08.

    Google Scholar 

  • Hokkanen, S., Bhatnagar, A., & Sillanpaa, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/10.1016/j.watres.2016.01.008.

    Article  CAS  Google Scholar 

  • Hossain, M., Ngo, H., Guo, W., & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Bioresource Technology, 121, 386–395.

    Article  CAS  Google Scholar 

  • Jnr, M. H., Spiff, A. I., & Abia, A. A. (2004). Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta Cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bulletin of the Korean Chemical Society, 25(7), 969–976.

    Article  Google Scholar 

  • Jorgetto, A. O., Silva, R. I. V., Saeki, M. J., Barbosa, R. C., Martines, M. A. U., Jorge, S. M. A., et al. (2014). Cassava root husks powder as green adsorbent for the removal of Cu(II) from natural river water. Applied Surface Science, 288, 356–362. https://doi.org/10.1016/j.apsusc.2013.10.032.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., & Anirudhan, T. (2003). Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA, 29(2), 147–156.

    Article  CAS  Google Scholar 

  • Laus, R., Costa, T. G., Szpoganicz, B., & Favere, V. T. (2010). Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials, 183(1–3), 233–241. https://doi.org/10.1016/j.jhazmat.2010.07.016.

    Article  CAS  Google Scholar 

  • Leyva-Ramos, R., Landin-Rodriguez, L. E., Leyva-Ramos, S., & Medellin-Castillo, N. A. (2012). Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(II) from water solution. Chemical Engineering Journal, 180, 113–120. https://doi.org/10.1016/j.cej.2011.11.021.

    Article  CAS  Google Scholar 

  • Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141(1), 163–167.

    Article  CAS  Google Scholar 

  • Man, M., Naidu, R., & Wong, M. H. (2013). Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Science of The Total Environment, 463-464, 1133–1137.

    Article  CAS  Google Scholar 

  • Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Bioresource Technology, 132, 446–452.

    Article  CAS  Google Scholar 

  • Markowitz, M. (2000). Lead poisoning: a disease for the next millennium. Current Problems in Pediatrics, 30, 62–70.

    Article  CAS  Google Scholar 

  • Meunier, N., Laroulandie, J., Blais, J., & Tyagi, R. (2003). Cocoa shells for heavy metal removal from acidic solutions. Bioresource Technology, 90(3), 255–263.

    Article  CAS  Google Scholar 

  • Nadeem, R., Manzoor, Q., Iqbal, M., & Nisar, J. (2016). Biosorption of Pb (II) onto immobilized and native Mangifera indica waste biomass. Journal of Industrial and Engineering Chemistry, 35, 185–194.

    Article  CAS  Google Scholar 

  • Nazir, H., Salman, M., Athar, M., Farooq, U., Akram, M., & Saleem, N. (2019). A novel biosorbent B. spectabilisis stalks leaves for removal of Cd(II) and Cu(II) from wastewater. Desalination and Water Treatment, 148, 222–228. https://doi.org/10.5004/dwt.2019.23706.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Altun, T., Cetin, S., & Bhanger, M. I. (2009). Lead sorption by waste biomass of hazelnut and almond shell. Journal of Hazardous Materials, 167(1–3), 1203–1208.

    Article  CAS  Google Scholar 

  • Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., et al. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778–788. https://doi.org/10.1016/j.cej.2015.12.042.

    Article  CAS  Google Scholar 

  • Pitsari, S., Tsoufakis, E., & Loizidou, M. (2013). Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chemical Engineering Journal, 223, 18–30. https://doi.org/10.1016/j.cej.2013.02.105.

    Article  CAS  Google Scholar 

  • Rafiq, M., Farooq, U., Athar, M., Salman, M., Aslam, M., & Raza, H. M. H. (2015). Gardenia jasminoides: an ornamental plant for the biosorption of lead and cadmium ions. Desalination and Water Treatment, 57(22), 10432–10442. https://doi.org/10.1080/19443994.2015.1035341.

    Article  CAS  Google Scholar 

  • Rwiza, M. J., Oh, S. Y., Kim, K. W., & Kim, S. D. (2018). Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania. Chemosphere, 195, 135–145. https://doi.org/10.1016/j.chemosphere.2017.12.043.

    Article  CAS  Google Scholar 

  • Saeed, A., Iqbal, M., & Höll, W. H. (2009). Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. Journal of Hazardous Materials, 168(2–3), 1467–1475.

    Article  CAS  Google Scholar 

  • Salman, M., Athar, M., Farooq, U., Nazir, S., & Nazir, H. (2013). Insight to rapid removal of Pb(II), Cd(II), and Cu(II) from aqueous solution using an agro-based adsorbentSorghum bicolorL. Biomass Desalination and Water Treatment, 51(22–24), 4390–4401. https://doi.org/10.1080/19443994.2012.749186.

    Article  CAS  Google Scholar 

  • Salman, M., Athar, M., Farooq, U., Rauf, S., & Habiba, U. (2014). A new approach to modification of an agro-based raw material for Pb(II) adsorption. Korean Journal of Chemical Engineering, 31(3), 467–474. https://doi.org/10.1007/s11814-013-0264-8.

    Article  CAS  Google Scholar 

  • Salman, M., Athar, M., & Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Bio/Technology, 14(2), 211–228. https://doi.org/10.1007/s11157-015-9362-x.

    Article  CAS  Google Scholar 

  • Skerfving, S., Löfmark, L., Lundh, T., Mikoczy, Z., & Strömberg, U. (2015). Late effects of low blood lead concentrations in children on school performance and cognitive functions. Neurotoxicology, 49, 114–120.

    Article  CAS  Google Scholar 

  • Socrates, G. (1994). Infrared characteristic frequencies, 2nd. Wiley&Sons.

  • Soyol-Erdene, T. O., Oyungerel, S., Dorj, D., Lin, S., Tseveendorj, E., & Enkhdul, T. (2018). Biosorption of lead (II) from an aqueous solution using biosorbents prepared from water plants. Mongolian Journal of Chemistry, 18(44), 52–61. https://doi.org/10.5564/mjc.v18i44.937.

    Article  CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresource Technology, 99, 6017–6027.

    Article  CAS  Google Scholar 

  • Theivarasu, C., & Mylsamy, S. (2010). Equilibrium and kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. International Journal of Engineering, Science and Technology, 2(11), 6284–6292.

    Google Scholar 

  • Unuabonah, E., Olu-Owolabi, B., Adebowale, K., & Ofomaja, A. (2007). Adsorption of lead and cadmium ions from aqueous solutions by tripolyphosphate-impregnated kaolinite clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2–3), 202–211.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Fatinathan, S. (2010). Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 91, 958–969.

    Article  Google Scholar 

  • Wan, T., Huang, R., Xiong, L., Zhao, Q., Luo, L., Zhang, H., et al. (2014). Swelling behaviors and gel strength studies of wheat straw-composite superabsorbent. Journal of Composite Materials, 48(19), 2341–2348.

    Article  Google Scholar 

  • Wang, Y., Hu, L., Zhang, G., Yan, T., Yan, L., Wei, Q., et al. (2017). Removal of Pb (II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. Journal of Colloid and Interface Science, 494, 380–388.

    Article  CAS  Google Scholar 

  • Yousaf, A., Athar, M., Salman, M., Farooq, U., & Chawla, F. S. (2017). Biosorption characteristics of Pennisetum glaucum for the removal of Pb(II), Ni(II) and Cd(II) ions from aqueous medium. Green Chemistry Letters and Reviews, 10(4), 462–470. https://doi.org/10.1080/17518253.2017.1402093.

    Article  CAS  Google Scholar 

  • Yu, J.-X., Wang, L.-Y., Chi, R.-A., Zhang, Y.-F., Xu, Z.-G., & Guo, J. (2013). Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268, 163–170. https://doi.org/10.1016/j.apsusc.2012.12.047.

    Article  CAS  Google Scholar 

  • Yuan, G., Tu, H., Li, M., Liu, J., Zhao, C., Liao, J., et al. (2019). Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 466, 903–910. https://doi.org/10.1016/j.apsusc.2018.10.129.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, Z., Chen, H., Kai, C., Jiang, M., Wang, Q., et al. (2018). Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal. Applied Surface Science, 440, 1277–1285. https://doi.org/10.1016/j.apsusc.2018.01.191.

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., et al. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.

    Article  CAS  Google Scholar 

  • Zhou, J., Liu, Y., Zhou, X., Ren, J., & Zhong, C. (2018). Magnetic multi-porous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution. Applied Surface Science, 427, 976–985. https://doi.org/10.1016/j.apsusc.2017.08.110.

    Article  CAS  Google Scholar 

  • Zulkali, M. M. D., Ahmad, A. L., Norulakmal, N. H., & Sharifah, N. S. (2006). Comparative studies of Oryza sativa L. husk and chitosan as lead adsorbent. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(7), 1324–1327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huma Nazir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, H., Salman, M., Athar, M. et al. Citric Acid Functionalized Bougainvillea spectabilis: a Novel, Sustainable, and Cost-effective Biosorbent for Removal of Heavy Metal (Pb2+) from Waste Water. Water Air Soil Pollut 230, 303 (2019). https://doi.org/10.1007/s11270-019-4360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4360-1

Keywords

Navigation