Skip to main content
Log in

Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The bivalve specie Mytella charruana has shown great potential as a bioindicator in natural waters and a biofilter for the adsorption of metals, such as Cr(VI). This species has been found in important densities in Cartagena de Indias Bay, where high concentrations of Cr(VI) have also been reported. Thus, the purpose of this paper is to study the potential of the bivalve specie Mytella charruana, grown in Cr(VI) rich media, as a bio-adsorption treatment for Cr(VI) removal in aquatic environments such as mangrove ecosystems. For the experimental setup the bivalves collected from the mangrove roots were distributed into 5 L glass containers filled with unfiltered water from the media, and additional Cr(VI) solutions to reach 20, 30 and 50 μg/L concentrations. The containers, prepared by triplicate and with 3 control tanks, were aerated for 4 days and samples were daily taken to follow the pH, conductivity, total dissolved solids, and Cr(VI) concentration in both water and biomass. The bivalve species demonstrated biological activity through the presence of feces and pseudofeces settled in the tanks, the reduction of Cr(VI) concentration in the water phase, with and efficiency that improved with the initial concentration, and the survivability of the individuals. The bivalves acted as biofilters for the removal of Cr(VI) in the media, and, although they are not accumulating the contaminant in their organisms but eliminating it through their feces and pseudofeces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA-AWWA-WPCF. (2012). Standard methods for the examination of water and wastewater. APHA American Public Health Association. Vol. 22, USA.

  • Arcaría, N., García, A., & Darrigran, G. (2012). El mejillón charrúa (Mytella charruana) (in Spanish). Boletín Biológica, 24(6), 26–27 http://www.revistaboletinbiologica.com.ar/pdfs/biologica24completo.pdf. .

    Google Scholar 

  • Astorga-Rodríguez, J. E., Martínez-Rodríguez, I. E., García-de la Parra, L. M., Betancourt-Lozano, M., Vanegas-Pérez, R. C., Ponce de León-Hill, C. A., & Ruelas-Inzunza, J. (2018). Lead and cadmium levels in mussels and fishes from three coastal ecosystems of NW Mexico and its potential risk due to fish and seafood consumption. Toxicology and Environmental Health Sciences, 10(3), 203–211 https://doi.org/10.1007/s13530-018-0365-1.

    Article  Google Scholar 

  • Baumard, P., Budzinski, H., Garrigues, P., Sorbe, J. C., Burgeot, T., & Bellocq, J. (1998). Concentrations of PHAs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Marine Pollution Bulletin, 36, 951–960 https://doi.org/10.1016/S0025-326X(98)00088-5.

    Article  CAS  Google Scholar 

  • Box, J. F. (1987). Guinness, Gosset, fisher, and small samples. Statistical Science, 2(1), 45–52 https://doi.org/10.1214/ss/1177013437.

    Article  Google Scholar 

  • Cascaret-Carmenaty, D., Calzado-Lamela, O., & Pérez-Silva, C. R. (2014). Determinación de la capacidad de adsorción de Cromo (VI) por biomasa bacteriana (in Spanish). Revista Cubana de Química, 26(3), 215–224 http://scielo.sld.cu/pdf/ind/v26n3/ind05314.pdf. .

    Google Scholar 

  • Chávez, A. (2010). Descripción de la Nocividad del Cromo Proveniente de la Industria Curtiembre y de las Posibles Formas de Removerlo (in Spanish). Revista Ingenierías Universidad de Medellín, 9(17), 41–50 https://revistas.udem.edu.co/index.php/ingenierias/article/view/6. .

    Google Scholar 

  • Chitraprabha, K., & Sathyavathi, S. (2018). Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustainable Environment Research, 28, 128–134 https://doi.org/10.1016/j.serj.2018.01.002.

    Article  CAS  Google Scholar 

  • Concha-Castro, C., García-Portacio, T., Mendoza, D., Martínez-Pajaro, C., Fajardo-Herrera, R., & Lambis-Miranda, H. (2017). Spatial analysis about structural patterns of fate of chromium (VI) in relation to pH at natural seawater bodies. Chemical Engineering Transactions, 57, 391–396 https://doi.org/10.3303/CET1757066.

    Google Scholar 

  • Derrick, B., Toher, D., & White, P. (2017). How to compare the means of two samples that include paired observations and independent observations: A companion to Derrick, Russ, Toher and White. The Quantitative Methods in Psychology, 3(2), 120–126 https://doi.org/10.20982/tqmp.13.2.p120.

    Article  Google Scholar 

  • Dornelles, L. P., Deodato de Souza, M. F., da Silva, P. M., Procópio, T. F., Salas Roldan, F. R., de Albuquerque Lima, T., Silva de Oliveira, A. P., Zingali, R. B., Paiva, P. M. G., Pontual, E. V., & Napoleão, T. H. (2018). Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides. Food Chemistry, 245, 1169–1185 https://doi.org/10.1016/j.foodchem.2017.11.044.

    Article  CAS  Google Scholar 

  • Eggs, N., Salvarezza, S., Azario, R., Fernández, N., & García, M. D. C. (2012). Adsorción de cromo hexavalente en la cáscara de arroz modificada químicamente (in Spanish). Avances en Ciencias e Ingeniería, 3(3), 141–151 https://www.redalyc.org/html/3236/323627687014/. .

    CAS  Google Scholar 

  • Ferrari, B. J. D., Vignati, D. A. L., Roulier, J. L., Coquery, M., Szalinska, E., Bobrowskif, A., Czaplicka, A., & Dominika, J. (2019). Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 2: New insights from laboratory and in situ testing with Chironomus riparius Meigen (Diptera, Chironomidae). Science of the Total Environment, 653, 1–9 https://doi.org/10.1016/j.scitotenv.2018.10.258.

    Article  CAS  Google Scholar 

  • Foroughbakhch, R., Céspedes, A., Alvarado-Vázquez, M., Núñez, A., Badii, M. (2004). Aspectos ecológicos de los manglares y su potencial como fitorremediadores en el golfo de México (in Spanish). Ciencia UANL, VII,203-208. .

  • Galimany, E., Lunt, J., Domingos, A., & Paul, V. J. (2018). Feeding behavior of the native mussel Ischadium recurvum and the invasive mussels Mytella charruana and Perna viridis in FL, USA, across a salinity gradient. Estuaries and Coasts, 41(8), 2378–2388 https://doi.org/10.1007/s12237-018-0431-6.

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319 https://doi.org/10.1016/S1093-0191(02)00004-7.

    Article  CAS  Google Scholar 

  • Hammer, O., Harper, D.A.T., Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica. 4(1), 1–9. Retrived from: https://palaeo-electronica.org/2001_1/past/past.pdf

  • Henriques, B., Teixeira, A., Figueira, P., Reis, A. T., Almeida, J., Vale, C., & Pereira, E. (2019). Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca. Science of the Total Environment, 652, 880–888 https://doi.org/10.1016/j.scitotenv.2018.10.282.

    Article  Google Scholar 

  • Higino, P. A. S., Jesus, T. B., Carvalho, C. E. V., Tonial, L. S. S., & Calado, T. C. S. (2012). Seasonal variation of Total mercury in mussels (Mytella charruana, Orbigny, 1842) from a tropical lagoon, NE, Brazil. Revista Virtual de Química, 4(4), 393–404 http://rvq.sbq.org.br/imagebank/pdf/v4n4a05.pdf. .

    Article  CAS  Google Scholar 

  • Kan, C. C., Ibe, A. H., Rivera, K. K., Arazo, R. O., & de Luna, M. D. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27, 163–171 https://doi.org/10.1016/j.serj.2017.04.001.

    Article  CAS  Google Scholar 

  • Liu, W., Yang, L., Xu, S., Chen, Y., Liu, B., Li, Z., & Jiang, C. (2018). Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites. RSC Advances, 8, 15087–15093 https://doi.org/10.1039/c8ra01805g.

    Article  CAS  Google Scholar 

  • Maioli, O. L. G., Rodrigues, K. C., Knoppers, B. A., & Azevedo, D. A. (2010). Polycyclic aromatic and aliphatic hydrocarbons in Mytella charruana, a bivalve mollusk from Mundaú lagoon, Brazil. Microchemical Journal, 96, 172–179 https://doi.org/10.1016/j.microc.2010.03.001.

    Article  CAS  Google Scholar 

  • Mediodia, D. P., de Leon, S. M. S., Anasco, N. C., & Baylon, C. C. (2017). Shell morphology and anatomy of the Philippine Charru mussel Mytella charruana (D’orbigny 1842). Asian Fisheries Science, 30(3), 185–194.

    Article  Google Scholar 

  • Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2009). Engineering statistics. John Wiley & Sons.

  • Mystrioti, C., Toli, A., Papasiopi, N., Dermatas, D., & Thimi, S. (2018). Chromium removal with environmentally friendly Iron nanoparticles in a pilot scale study. Bulletin of Environmental Contamination and Toxicology, 101, 705–710 https://doi.org/10.1007/s00128-018-2424-3.

    Article  CAS  Google Scholar 

  • Nemecek, J., Lhotsky, O., & Cajthaml, T. (2014). Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment, 485, 739–747 https://doi.org/10.1016/j.scitotenv.2013.11.105.

    Article  Google Scholar 

  • O'Neill, M. E., & Mathews, K. L. (2002). Levene tests of homogeneity of variance for general block and treatment designs. Biometrics, 58(1), 216–224.

    Article  Google Scholar 

  • Pérez, A., Fajardo, M. A., Strobl, A., Pérez, L., Piñeiro, A., & López, C. (2005). Content of lead, chromium and cadmium in edible mussels of the Gulf san Jorge (Argentina). Acta Toxicológica Argentina, 13(1), 20–25 http://www.ingenieroambiental.com/4014/sanjorge.pdf. .

    Google Scholar 

  • Pusceddu, F. H., Choueri, R. B., Pereira, C. D. S., Cortez, F. S., Santos, D. R. A., Moreno, B. B., Santos, A. R., Rogero, J. R., & Cesar, A. (2018). Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints. Environmental Pollution, 232, 274–283 https://doi.org/10.1016/j.envpol.2017.09.046.

    Article  CAS  Google Scholar 

  • Puyana, M., Prato, J., & Díaz, J. M. (2012). Mytella charruana (d'Orbigny) (Mollusca: Bivalvia: Mytilidae) in Cartagena Bay, Colombia (in Spanish). Boletín de Investigaciones Marinas y Costeras, 41(1), 213–217 http://boletin.invemar.org.co/index.php/boletin/article/view/80/77. .

    Google Scholar 

  • Rahmawati, A., Marwoto, P., & Karunia, A. (2016). Papaya seeds as a low-cost sorbent for removing Cr(VI) from the aqueous solution. Journal of Physics: Conference Series, 739, 012–017 https://doi.org/10.1088/1742-6596/739/1/012017.

    Google Scholar 

  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2, 21–33.

    Google Scholar 

  • Rice, M. A., Rawson, P. D., Salinas, A. D., & Rosario, W. R. (2016). Identification and salinity tolerance of the Western hemisphere mussel Mytella charruana (D'Orbigny, 1842) in the Philippines. Journal of Shellfish Research, 35(4), 865–874 https://doi.org/10.2983/035.035.0415.

    Article  Google Scholar 

  • Rojas-Romero, J. E., Rincón-Ramírez, J. E., Marín-Leal, J. C., Ortega-Fuenmayor, P. C., Buonocore-Tovar, R., Colina, M., & Brinolfo-Montilla, J. (2015). Toxicidad y bioacumulación de Cromo (Cr+6) en la almeja Polymesoda solida del sistema estuarino Lago de Maracaibo (in Spanish). Boletín del Centro de Investigaciones Biológicas, 49(1), 5–25 http://produccioncientificaluz.org/index.php/boletin/article/download/20876/20749. .

    Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611 https://doi.org/10.1093/biomet/52.3-4.591.

    Article  Google Scholar 

  • Singh, R., Misra, V., & Singh, R. P. (2012). Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Bulletin of Environmental Contamination and Toxicology, 88, 210–214 https://doi.org/10.1007/s00128-011-0425-6.

    Article  CAS  Google Scholar 

  • Tapia, J., Freer, J., Mansilla, H., Villaseñor, J., Bruhn, C., & Basualto, S. (2002). Estudio de Reducción Fotocatalizada de Cromo Hexavalente (in Spanish). Boletín de la Sociedad Chilena de Química, 47(4), 469–476 https://doi.org/10.4067/S0366-16442002000400018.

    Article  CAS  Google Scholar 

  • Valdelamar, J., Pasqualino, J., Herrera, D. (2018). Potential application of Mytella charruana in wastewater treatment. (application of M. charruana in wastewater treatment). Boletín Científico del CIOH, 2018(36), 41-52. DOI: https://doi.org/10.26640/22159045.437.

  • Vignati, D. A. L., Ferrari, B. J. D., Roulier, J. L., Coquery, M., Szalinska, E., Bobrowski, A., Czaplicka, A., Kownacki, A., & Dominika, J. (2019). Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids. Science of the Total Environment, 653, 401–408 https://doi.org/10.1016/j.scitotenv.2018.10.259.

    Article  CAS  Google Scholar 

  • Villalobos, D. B., Mendoza, D. C., Martínez-Pájaro, C., Fajardo-Herrera, R., & Lambis-Miranda, H. A. (2018). Spatial perspective of hexavalent chromium concentration in superficial waters of the Ciénaga de las Quintas mangrove swamp, Cartagena de Indias, Colombia. Lakes & Reservoirs, 2018, 1–10 https://doi.org/10.1111/lre.12244.

    Google Scholar 

  • Yuan, W. S., Walters, L. J., Brodsky, S. A., Schneider, K. R., & Hoffman, E. A. (2016). Synergistic effects of salinity and temperature on the survival of two nonnative bivalve Molluscs, Perna viridis (Linnaeus 1758) and Mytella charruana (d’Orbigny 1846). Journal of Marine Biology, 2016, 1–14 https://doi.org/10.1155/2016/9261309.

    Article  Google Scholar 

  • Zou, H., Hu, E., Yang, S., Gong, L., & He, F. (2019). Chromium (VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant. Science of the Total Environment, 650(1), 419–426 https://doi.org/10.1016/j.scitotenv.2018.09.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support given by Fundación Universitaria Tecnológico Comfenalco – Cartagena (Colombia), the members of the CIPTEC Research Group, Universidad de Cartagena, and Universidad Tecnológica de Bolívar. This work was funded by the Fundación Universitaria Tecnológico Comfenalco – Cartagena (Resolution #318 from October 28th 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorgelina Pasqualino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, M., Patrón, S., Fajardo-Herrera, R. et al. Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments. Water Air Soil Pollut 231, 21 (2020). https://doi.org/10.1007/s11270-019-4349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4349-9

Keywords

Navigation