The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen

Abstract

Both domestic and industrial effluent treatments contain or produce nitrogen loading during the treatment process. It is important to seek the removal of nitrogen while maintaining the design of existing systems, which are usually composed by the association of anaerobic and aerobic reactors. Thus, in this research, an anaerobic filter (AF) and an upflow anaerobic sludge blanket (UASB) reactors were fed with synthetic effluent enriched with nitrate to compare how these reactors would behave if they became denitrifying reactors. With the application of 100.0 mg NO3-NL−1, the AF presented better efficiency. With respect to the biogas production, the composition was significantly altered: from CH4 and CO2 concentrations close to 70% and 13% without NO3N addition to N2 concentration higher than 85% with addition of 100.0 mg NO3-NL−1. The UASB hydrodynamic profile was modified due to an increase in the mixing behavior along the denitrification stages by biogas production. This was not observed in the AF due to the presence of the support media, which was also responsible for ensuring a greater capacity to withstand denitrification without organic matter being carried out of the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81. https://doi.org/10.5943/ppq/5/2/6.

    Article  Google Scholar 

  2. Al-Zreiqat, I., Abbassi, B., Headley, T., Nivala, J., van Afferden, M., & Müller, R. A. (2018). Influence of septic tank attached growth media on total nitrogen removal in a recirculating vertical flow constructed wetland for treatment of domestic wastewater. Ecological Engineering, 118, 171–178. https://doi.org/10.1016/J.ECOLENG.2018.05.013.

    Article  Google Scholar 

  3. An, Y., Yang, F., Chua, H. C., Wong, F. S., & Wu, B. (2008). The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresource Technology, 99(9), 3714–3720. https://doi.org/10.1016/J.BIORTECH.2007.07.020.

    CAS  Article  Google Scholar 

  4. Andalib, M., Nakhla, G., McIntee, E., & Zhu, J. (2011). Simultaneous denitrification and methanogenesis (SDM): review of two decades of research. Desalination, 279(1–3), 1–14. https://doi.org/10.1016/J.DESAL.2011.06.018.

    CAS  Article  Google Scholar 

  5. APHA, AWWA, & WEF. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: American Public Health Association.

    Google Scholar 

  6. Azevedo, L. S., Castro, I. M. P., Leal, C. D., Araújo, J. C., & Chernicharo, C. A. L. (2018). Performance and bacterial diversity of bioreactors used for simultaneous removal of sulfide, solids and organic matter from UASB reactor effluents. Water Science and Technology, 78(6), 1312–1323. https://doi.org/10.2166/wst.2018.403.

    CAS  Article  Google Scholar 

  7. Browner, C. M., Fox, A. J. C., Grubbs, G. H., Rubin, M., Barash, S. Z., Ebner, M. C., & Tudor, L. (2000). Development document for the proposed effluent limitations guidelines and standards for the metal products & Machinery Point Source Category.

  8. Chang, D., Seo, S. C., & Hong, K. H. (2004). Pre Denitri. and post nitri in Adv Ww treat.Pdf. Journal of Industrial and Engineering Chemistry, 10(3), 354–360.

    CAS  Google Scholar 

  9. Chernicharo, C. A. L. (2007). Anaerobic reactors. IWA Publishing.

  10. Chernicharo, C. A. L., van Lier, J. B., Noyola, A., & Bressani Ribeiro, T. (2015). Anaerobic sewage treatment: state of the art, constraints and challenges. Reviews in Environmental Science and Bio/Technology, 14(4), 649–679. https://doi.org/10.1007/s11157-015-9377-3.

    CAS  Article  Google Scholar 

  11. Council Directive 91/271/EEC. (1991). Council directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, The Council of the European Communities.

  12. Cruz, L., Stefanutti, R., Coraucci Filho, B., & Tonetti, A. (2013). Coconut shells as filling material for anaerobic filters. SpringerPlus, 2(1), 655. https://doi.org/10.1186/2193-1801-2-655.

    CAS  Article  Google Scholar 

  13. Eiroa, M., Kennes, C., & Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 38(16), 3495–3502. https://doi.org/10.1016/J.WATRES.2004.04.055.

    CAS  Article  Google Scholar 

  14. Ersahin, M. E., Ozgun, H., Dereli, R. K., & Ozturk, I. (2011). Anaerobic treatment of industrial effluents: an overview of applications. In Waste water-treatment and reutilization. InTech.

  15. Fang, H. H. P. (2010). Environmental anaerobic technology: applications and new developments. Imperial College Press.

  16. Gavrilescu, M., & Macoveanu, M. (2000). Attached-growth process engineering in wastewater treatment. Bioprocess Engineering, 23(1), 95–106. https://doi.org/10.1007/s004490050030.

    CAS  Article  Google Scholar 

  17. Han, Y., Liu, J., Guo, X., & Li, L. (2012). Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresource Technology, 124, 252–258. https://doi.org/10.1016/J.BIORTECH.2012.08.008.

    CAS  Article  Google Scholar 

  18. Hanaki, K., & Polprasert, C. (1989). Contribution of methanogenesis to denitrification with an upflow filter. Research Journal of the Water Pollution Control Federation. https://doi.org/10.2307/25043777.

  19. Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I., Frischkorn, K. R., et al. (2013). Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1(1), 22. https://doi.org/10.1186/2049-2618-1-22.

    Article  Google Scholar 

  20. Jin, B., & Lant, P. (2004). Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors. Chemical Engineering Science, 59(12), 2379–2388. https://doi.org/10.1016/J.CES.2004.01.061.

    CAS  Article  Google Scholar 

  21. Jin, X., Wang, F., Liu, G., & Yan, N. (2012). A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 47(7), 1122–1128. https://doi.org/10.1016/J.PROCBIO.2012.04.001.

    CAS  Article  Google Scholar 

  22. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103. https://doi.org/10.1016/J.WATRES.2009.03.001.

    CAS  Article  Google Scholar 

  23. Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., & Jegatheesan, V. (2011). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, 102(9), 5331–5336. https://doi.org/10.1016/J.BIORTECH.2010.09.100.

    Article  Google Scholar 

  24. Klas, S., Mozes, N., & Lahav, O. (2006). A conceptual, stoichiometry-based model for single-sludge denitrification in recirculating aquaculture systems. Aquaculture, 259(1–4), 328–341. https://doi.org/10.1016/J.AQUACULTURE.2006.05.048.

    Article  Google Scholar 

  25. Kodera, T., Akizuki, S., & Toda, T. (2017). Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochemistry, 58, 252–257. https://doi.org/10.1016/J.PROCBIO.2017.04.038.

    CAS  Article  Google Scholar 

  26. Kreft, P., Scheible, O. K., & Venosa, A. (1986). Hydraulic studies and cleaning evaluations of ultraviolet disinfection units. Journal (Water Pollution Control Federation). https://doi.org/10.2307/25043146.

  27. Leal, C. D., Pereira, A. D., Nunes, F. T., Ferreira, L. O., Coelho, A. C. C., Bicalho, S. K., et al. (2016). Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure. Bioresource Technology, 211, 257–266. https://doi.org/10.1016/J.BIORTECH.2016.03.107.

    CAS  Article  Google Scholar 

  28. Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), 4140–4143.

    CAS  Article  Google Scholar 

  29. Leverenz, H. L., Haunschild, K., Hopes, G., Tchobanoglous, G., & Darby, J. L. (2010). Anoxic treatment wetlands for denitrification. Ecological Engineering, 36(11), 1544–1551. https://doi.org/10.1016/J.ECOLENG.2010.03.014.

    Article  Google Scholar 

  30. Lim, S. J., & Fox, P. (2011). A kinetic analysis and experimental validation of an integrated system of anaerobic filter and biological aerated filter. Bioresource Technology, 102(22), 10371–10376. https://doi.org/10.1016/J.BIORTECH.2011.09.005.

    CAS  Article  Google Scholar 

  31. Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254. https://doi.org/10.1016/J.WATRES.2014.06.042.

    CAS  Article  Google Scholar 

  32. Mac Conell, E. F. A., Almeida, P. G. S., Martins, K. E. L., Araújo, J. C., & Chernicharo, C. A. L. (2015). Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent. Water Science & Technology, 72(1), 116. https://doi.org/10.2166/wst.2015.154.

    CAS  Article  Google Scholar 

  33. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/J.RSER.2015.02.032.

    CAS  Article  Google Scholar 

  34. Mateo-Sagasta Dávila, J., Khassab, G., Klapwijk, A., & van Lier, J. B. (2009). Combination of methanogenesis and denitrification in a UASB reactor for water reclamation applied to small agglomerations. Desalination and Water Treatment, 4(1–3), 177–182. https://doi.org/10.5004/dwt.2009.373.

    Article  Google Scholar 

  35. Méndez-Romero, D. C., López-López, A., Vallejo-Rodríguez, R., & León-Becerril, E. (2011). Hydrodynamic and kinetic assessment of an anaerobic fixed-bed reactor for slaughterhouse wastewater treatment. Chemical Engineering and Processing: Process Intensification, 50(3), 273–280. https://doi.org/10.1016/J.CEP.2011.02.002.

    Article  Google Scholar 

  36. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  37. Muyzer, G. T., Brinkhoff, U., Nübel, C., Santegoeds, H., & Schäfer, C. (1997). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular Microbial Ecology Manual, Kluwer Academics Publishers. Dordrecht, The Netherlands, 1–27.

  38. Niu, W., Guo, J., Lian, J., Ngo, H. H., Li, H., Song, Y., et al. (2018). Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochemical Engineering Journal, 132, 29–37. https://doi.org/10.1016/J.BEJ.2017.12.017.

    CAS  Article  Google Scholar 

  39. Noyola, A., Padilla-Rivera, A., Morgan-Sagastume, J. M., Güereca, L. P., & Hernández-Padilla, F. (2012). Typology of municipal wastewater treatment technologies in Latin America. CLEAN - Soil, Air, Water, 40(9), 926–932. https://doi.org/10.1002/clen.201100707.

    CAS  Article  Google Scholar 

  40. Pagáčová, P., Galbová, K., Drtil, M., & Jonatová, I. (2010). Denitrification in USB reactor with granulated biomass. Bioresource Technology, 101(1), 150–156. https://doi.org/10.1016/J.BIORTECH.2009.08.021.

    Article  Google Scholar 

  41. Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2006). Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renewable Energy, 31(6), 893–903. https://doi.org/10.1016/J.RENENE.2005.05.013.

    CAS  Article  Google Scholar 

  42. Peña, M. R., Mara, D. D., & Avella, G. P. (2006). Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Research, 40(3), 445–452. https://doi.org/10.1016/J.WATRES.2005.11.021.

    Article  Google Scholar 

  43. Perry, J. H. (1950). Chemical engineers’ handbook. ACS Publications.

  44. Polprasert, C., & Park, H. S. (1986). Effluent denitrification with anaerobic filters. Water Research, 20(8), 1015–1021. https://doi.org/10.1016/0043-1354(86)90044-8.

    CAS  Article  Google Scholar 

  45. Quaff, A. R., & Guha, S. (2011). Evaluation of mixing and performance of lab-scale upflow anaerobic sludge blanket reactors treating domestic wastewater. Journal of Environmental Engineering, 137(5), 322–331. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000333.

    CAS  Article  Google Scholar 

  46. Renuka, R., Mariraj Mohan, S., & Amal Raj, S. (2016). Hydrodynamic behaviour and its effects on the treatment performance of panelled anaerobic baffle-cum filter reactor. International journal of Environmental Science and Technology, 13(1), 307–318. https://doi.org/10.1007/s13762-015-0824-z.

    CAS  Article  Google Scholar 

  47. Robarge, W. P., Edwards, A., & Johnson, B. (1983). Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14(12), 1207–1215. https://doi.org/10.1080/00103628309367444.

    CAS  Article  Google Scholar 

  48. Rosa, A. P., Conesa, J. A., Fullana, A., Melo, G. C. B., Borges, J. M., & Chernicharo, C. A. L. (2016). Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant. Water Science and Technology, 73(7), 1680–1690. https://doi.org/10.2166/wst.2015.643.

    CAS  Article  Google Scholar 

  49. Rosa, A. P., Chernicharo, C. A. L., Lobato, L. C. S., Silva, R. V., Padilha, R. F., & Borges, J. M. (2018). Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, 124, 21–26. https://doi.org/10.1016/J.RENENE.2017.09.025.

    Article  Google Scholar 

  50. Saliba, P. D., & Von Sperling, M. (2017). Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge. Water Science and Technology, 76(8), 2003–2014. https://doi.org/10.2166/wst.2017.284.

    CAS  Article  Google Scholar 

  51. Saliling, W. J. B., Westerman, P. W., & Losordo, T. M. (2007). Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacultural Engineering, 37(3), 222–233. https://doi.org/10.1016/J.AQUAENG.2007.06.003.

    Article  Google Scholar 

  52. Sánchez, E., Milán, Z., Borja, R., Weiland, P., & Rodriguez, X. (1995). Piggery waste treatment by anaerobic digestion and nutrient removal by ionic exchange. Resources, Conservation and Recycling, 15(3–4), 235–244. https://doi.org/10.1016/0921-3449(95)00033-X.

    Article  Google Scholar 

  53. Shen, Z., Zhou, Y., Hu, J., & Wang, J. (2013). Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. Journal of Hazardous Materials, 250–251, 431–438. https://doi.org/10.1016/J.JHAZMAT.2013.02.026.

    Article  Google Scholar 

  54. Show, K.-Y., & Tay, J.-H. (1999). Influence of support media on biomass growth and retention in anaerobic filters. Water Research, 33(6), 1471–1481. https://doi.org/10.1016/S0043-1354(98)00352-2.

    CAS  Article  Google Scholar 

  55. Silva, J. C. P., Tonetti, A. L., Leonel, L. P., & Costa, A. (2015). Denitrification on upflow-anaerobic filter filled with coconut shells (Cocos nucifera). Ecological Engineering, 82, 474–479. https://doi.org/10.1016/J.ECOLENG.2015.05.007. https://www.sciencedirect.com/science/article/pii/S0925857415300392?via%3Dihub

    Article  Google Scholar 

  56. Singh, N. K., Kazmi, A. A., & Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71(4), 468–478. https://doi.org/10.2166/wst.2014.413.

    CAS  Article  Google Scholar 

  57. Souza, C. L., Chernicharo, C. A. L., & Aquino, S. F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science and Technology, 64(11), 2259–2264. https://doi.org/10.2166/wst.2011.695.

    CAS  Article  Google Scholar 

  58. Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives. Science of the Total Environment, 635, 78–91. https://doi.org/10.1016/J.SCITOTENV.2018.04.071.

    CAS  Article  Google Scholar 

  59. Tchobanoglous, G., & Schroeder, E. E. (1985). Water quality: characteristics, modeling, modification. Reading: Addison-Wesley Pub. Co. https://www.osti.gov/biblio/5887635. Accessed 11 March 2019.

    Google Scholar 

  60. Tchobanoglous, G., Burton, F. L., Stensel, H. D., et. al. (2003). Metcalf & Eddy wastewater engineering: treatment and reuse. International Edition. McGrawHill, 4, 361–411.

  61. Tonetti, A. L., Coraucci Filho, B., Bertoncini, E. I., Oliveira, R. A., & Stefanutti, R. (2010). Avaliação de um sistema simplificado de tratamento de esgotos visando a utilização em áreas rurais. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(2), 227–234. https://doi.org/10.1590/S1415-43662010000200015.

    Article  Google Scholar 

  62. Tonetti, A. L., Coraucci Filho, B., Guimarães, J. R., Fadini, P. S., & Nicolau, C. E. (2013). Desnitrificação em um sistema simplificado de tratamento de esgoto. Engenharia Sanitaria e Ambiental, 18(4), 381–392. https://doi.org/10.1590/S1413-41522013000400010.

    CAS  Article  Google Scholar 

  63. USEPA. (2009). Nutrient control design manual: State of technology review report.

  64. Haandel, A. C. van, & Lettinga, G. (1994). Anaerobic sewage treatment: a practical guide for regions with a hot climate. Anaerobic sewage treatment: a practical guide for regions with a hot climate.

  65. Von Sperling, M., & Chernicharo, C. A. L. (2005). Biological wastewater treatment in warm climate regions. IWA.

  66. Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. https://doi.org/10.1016/J.WATRES.2011.11.080.

    CAS  Article  Google Scholar 

  67. Xue, Y., Guo, J., Lian, J., Zhang, Y., Zhang, C., & Zhao, Y. (2016). Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors. Biochemical Engineering Journal, 105, 136–143. https://doi.org/10.1016/J.BEJ.2015.09.010.

    CAS  Article  Google Scholar 

  68. Zhao, L., Guo, J., Lian, J., Guo, Y., Yue, L., Gou, C., et al. (2015). Study of the dynamics and material transformation characteristics of nitrite denitrification in UASB. Biotechnology & Biotechnological Equipment, 29(5), 907–914. https://doi.org/10.1080/13102818.2015.1050789.

    CAS  Article  Google Scholar 

  69. Zheng, M. X., Wang, K. J., Zuo, J. E., Yan, Z., Fang, H., & Yu, J. W. (2012). Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresource Technology, 107, 33–40. https://doi.org/10.1016/J.BIORTECH.2011.11.102.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (Brazilian National Council for Scientific and Technological Development, process number 311275/2015-0) and FAPESP (São Paulo Research Foundation, process number 2017/07490-4) for financing this study. The authors would also like to acknowledge the service of the Writing Space/General Coordination of UNICAMP for helping translate the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriano Luiz Tonetti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magalhães, T.M., Duarte, N.C., de Alencar Neves, T. et al. The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen. Water Air Soil Pollut 230, 234 (2019). https://doi.org/10.1007/s11270-019-4300-0

Download citation

Keywords

  • Nitrate
  • Anaerobic reactor
  • Denitrification
  • Biogas
  • Hydrodynamic
  • DGGE