Skip to main content
Log in

Photodegradation of Oxytetracycline in the Presence of Dissolved Organic Matter and Chloride Ions: Importance of Reactive Chlorine Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper investigated the photodegradation of oxytetracycline (OTC) in the presence of dissolved organic matter (DOM) and chloride ions, which is relevant to the estuary environment. The separate effects of chloride ions and DOM on the photodegradation of OTC were first studied, and then, the combined effects were studied. The photodegradation of OTC showed a tendency to decrease with increasing DOM levels: a low concentration of DOM (< 2 mg/L) enhanced the degradation of OTC, and a high concentration of DOM (> 5 mg/L) inhibited it. The addition of chloride ions (10–500 mmol/L) to DOM solutions (20 mg/L) significantly increased the degradation rate of OTC. The observed promotion effects may be a consequence of the participation of reactive chlorine species. Quenching experiments verified that the main active species in the presence of chloride ions and DOM are radicals including Cl/Cl2•− and HO. These results indicate a promotion of OTC degradation in saline water compared with fresh water, and this finding is important to better understand the environmental fate of OTC in estuarine and coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • al Housari, F., Vione, D., Chiron, S., & Barbati, S. (2010). Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochemical & Photobiological Science, 9, 78–86.

    Google Scholar 

  • Bao, Y. P., & Niu, J. F. (2015). Photochemical transformation of tetrabromobisphenol a under simulated sunlight irradiation: kinetics, mechanism and influencing factors. Chemosphere, 134, 550–556.

    CAS  Google Scholar 

  • Bautitz, I. R., & Nogueira, R. F. P. (2007). Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 187, 33–39.

    CAS  Google Scholar 

  • Bodhipaksha, L. C., Sharpless, C. M., Chin, Y. P., Sander, M., Langston, W. K., & Mackay, A. A. (2015). Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers. Environmental Science & Technology, 49, 3453–3463.

    CAS  Google Scholar 

  • Boreen, A. L., Arnold, W. A., & McNeill, K. (2004). Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environmental Science & Technology, 38, 3933–3940.

    CAS  Google Scholar 

  • Brezonik, P. L., & Fulkerson-Brekken, J. (1998). Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environmental Science & Technology, 32, 3004–3010.

    CAS  Google Scholar 

  • Brigante, M., Minella, M., Mailhot, G., Maurino, V., Minero, C., & Vione, D. (2014). Formation and reactivity of the dichloride radical (Cl2 −•) in surface waters: a modelling approach. Chemosphere, 95, 464–469.

    CAS  Google Scholar 

  • Chen, Y., Hu, C., Qu, J. H., & Yang, M. (2008). Photodegratation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 197, 81–87.

    CAS  Google Scholar 

  • Chen, Y., Li, H., Wang, Z. P., Tao, T., & Hu, C. (2011). Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: effects of Ca2+ and Mg2+. Journal of Environmental Sciences, 23, 1634–1639.

    CAS  Google Scholar 

  • Chen, L., Wang, Z., Wang, Z., & Gu, X. (2016). Influence of humic acid on the photolysis of Triclosan in different dissociation forms. Water, Air, & Soil Pollution, 227, 318.

    Google Scholar 

  • Chianese, S., Iovino, P., Leone, V., Musmarra, D., & Prisciandaro, M. (2017). Photodegradation of Diclofenac sodium salt in water solution: effect of HA, NO3 and TiO2 on photolysis performance. Water, Air, & Soil Pollution, 228, 270.

    Google Scholar 

  • Chiron, S., Minero, C., & Vione, D. (2006). Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environmental Science & Technology, 40, 5977–5983.

    CAS  Google Scholar 

  • Dong, B., & Hu, J. (2016). Photodegradation of the novel fungicide fluopyram in aqueous solution: kinetics, transformation products, and toxicity evolvement. Environmental Science and Pollution Research, 23, 19096−19106

  • Dulaquais, G., Breitenstein, J., Waeles, M., Marsac, R., & Riso, R. (2018). Measuring dissolved organic matter in estuarine and marine waters: size-exclusion chromatography with various detection methods. Environmental Chemistry, 15, 436–449.

    CAS  Google Scholar 

  • Ge, L. K., Chen, J. W., Lin, J., & Cai, X. Y. (2009). Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics. Environmental Science & Technology, 43, 3101–3107.

    CAS  Google Scholar 

  • Glover, C. M., & Rosario-Ortiz, F. L. (2013). Impact of halides on the photoproduction of reactive intermediates from organic matter. Environmental Science & Technology, 47, 13949–13956.

    CAS  Google Scholar 

  • Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2011). Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 45, 6535–6544.

    CAS  Google Scholar 

  • Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2012). Impact of halide ions on natural organic matter-sensitized photolysis of 17β-estradiol in saline waters. Environmental Science & Technology, 46, 7128–7134.

    CAS  Google Scholar 

  • Guerard, J. J., Miller, P. L., Trouts, T. D., & Chin, Y. P. (2009). The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquatic Sciences, 71, 160–169.

    CAS  Google Scholar 

  • Hassett, J. P. (2006). Enhanced: dissolved natural organic matter as a microreactor. Science, 311, 1723–1724.

    CAS  Google Scholar 

  • Hua, X., Zhao, Z., Zhang, L., Dong, D., & Guo, Z. (2018). Role of dissolved organic matter from natural biofilms in oxytetracycline photodegradation. Environmental Science and Pollution Research, 25, 30271−30280

  • Jiao, S. J., Zheng, S. R., Yin, D. Q., Wang, L. H., & Chen, L. Y. (2008). Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere, 73, 377–382.

    CAS  Google Scholar 

  • Jin, X., Xu, H. Z., Qiu, S. S., Jia, M. Y., Wang, F., Zhang, A. Q., & Jiang, X. (2017). Direct photolysis of oxytetracycline: influence of initial concentration, pH and temperature. Journal of Photochemistry and Photobiology A: Chemistry, 332, 224–231.

    CAS  Google Scholar 

  • Latch, D. E., Stender, B. L., Packer, J. L., Arnold, W. A., & McNeill, K. (2003). Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. Environmental Science & Technology, 37, 3342–3350.

    CAS  Google Scholar 

  • Leal, J. F., Esteves, V. I., & Santos, E. B. H. (2016). Use of sunlight to degrade oxytetracycline in marine aquaculture's waters. Environmental Pollution, 213, 932–939.

    CAS  Google Scholar 

  • Li, K., Ayfer, Y., Yang, M., Sigurd, S., & Wong, M. H. (2008). Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere, 72, 473–478.

    CAS  Google Scholar 

  • Liu, H., Zhao, H. M., Quan, X., Zhang, Y. B., & Chen, S. (2009). Formation of chlorinated intermediate from bisphenol a in surface saline water under simulated solar light irradiation. Environmental Science & Technology, 43, 7712–7717.

    CAS  Google Scholar 

  • Liu, Y. Q., He, X. X., Duan, X. D., Fu, Y. S., Fatta-Kassinos, D., & Dionysiou, D. D. (2016). Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. Water Research, 95, 195–204.

    CAS  Google Scholar 

  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. M. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17aethinylestradiol in fresh and seawater. Water, Air, & Soil Pollution, 196, 161–168.

    CAS  Google Scholar 

  • Mylon Steven, E., Chen, K. L., & Elimelech, M. (2004). Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries. Langmuir, 20, 9000–9006.

    CAS  Google Scholar 

  • Niu, J. F., Li, Y., & Wang, W. L. (2013). Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetic and mechanism. Chemosphere, 92, 1423–1429.

    CAS  Google Scholar 

  • Parker, K. M., & Mitch, W. A. (2016). Halogen radicals contribute to photooxidation in coastal and estuarine waters. Proceedings of the National Academy of Sciences of the United States of America, 113, 5868–5873.

    CAS  Google Scholar 

  • Parker, K. M., Reichwaldt, E. S., Ghadouani, A., & Mitch, W. A. (2016). Halogen radicals promote the photodegradation of microcystins in estuarine systems. Environmental Science & Technology, 50, 8505–8513.

    CAS  Google Scholar 

  • Pinto, M. I., Salgado, R., Laia, C. A. T., Cooper, W. J., Sontag, G., Burrows, H. D., Branco, L., Vale, C., & Noronh, J. P. (2018). The effect of chloride ions and organic matter on the photodegradation of acetamiprid in saline waters. Journal of Photochemistry and Photobiology A: Chemistry, 360, 117–124.

    CAS  Google Scholar 

  • Prabhakaran, D., Sukul, P., Lamshof, M., Maheswari, M. A., Zuhlke, S., & Spiteller, M. (2009). Photolysis of difloxacin and sarafloxacin in aqueous systems. Chemosphere, 77, 739–746.

    CAS  Google Scholar 

  • Reyes, C., Fernandez, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., & Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184, 141–146.

    CAS  Google Scholar 

  • Rubert, K. F., & Pedersen, J. A. (2006). Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environmental Science & Technology, 40, 7216–7221.

    CAS  Google Scholar 

  • Seto, Y., Ochi, M., Onoue, S., & Yamada, S. (2010). High-throughput screening strategy for photogenotoxic potential of pharmaceutical substances using fluorescent intercalating dye. Journal of Pharmaceutical and Biomedical Analysis, 52, 781–786.

    CAS  Google Scholar 

  • Vaughan, P. P., & Blough, N. V. (1998). Photochemical formation of hydroxyl radical by constituents of natural waters. Environmental Science & Technology, 32, 2947–2953.

    Google Scholar 

  • Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Arrison, M. A. J., Olariu, R. I., & Arsene, C. (2006). Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chemical Society Reviews, 35, 441–453.

    CAS  Google Scholar 

  • Walse, S. S., Morgan, S. L., Kong, L., & Ferry, J. L. (2004). Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil. Environmental Science & Technology, 38, 3908–3915.

    CAS  Google Scholar 

  • Wang, X. H., & Lin, A. Y. C. (2014). Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks? Environmental Pollution, 186, 203–215.

    CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research, 41, 4164–4176.

    CAS  Google Scholar 

  • Wenk, J., von Gunten, U., & Canonica, S. (2011). Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environmental Science & Technology, 45, 1334–1340.

    CAS  Google Scholar 

  • Xia, X. H., Li, G. C., Yang, Z. F., Chen, Y. M., & Huang, G. H. (2009). Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: importance of active oxygen. Environmental Pollution, 157, 1352–1359.

    CAS  Google Scholar 

  • Xu, J., Hao, Z. N., Guo, C. S., Zhang, Y., He, Y., & Meng, W. (2014). Photodegradation of sulfapyridine under simulated sunlight irradiation: kinetics,mechanism and toxicity evolvement. Chemosphere, 99, 186–191.

    CAS  Google Scholar 

  • Xuan, R., Arisi, L., Wang, Q., Yates, S. R., & Biswas, K. C. (2010). Hydrolysis and photolysis of oxytetracycline in aqueous solution. Journal of Environmental Science and Health, Part B, 45, 73–81.

    CAS  Google Scholar 

  • Zepp, R. G., Wolfe, N. L., Baughman, G. L., & Hollis, R. C. (1977). Singlet oxygen in natural waters. Nature, 267, 421–423.

    CAS  Google Scholar 

  • Zhang, K., & Parker, K. M. (2018). Halogen radical oxidants in natural and engineered aquatic systems. Environmental Science & Technology, 52, 9579–9594.

    CAS  Google Scholar 

  • Zhang, G. Y., Wu, B. D., & Zhang, S. Y. (2017). Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters. Environmental Pollution, 225, 691–699.

    CAS  Google Scholar 

  • Zou, S. C., Xu, W. H., Zhang, R. J., Tang, J. H., Chen, Y. J., & Zhang, G. (2011). Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environmental Pollution, 159, 2913–2920.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 41576111, 41206095, 21407018) and Fundamental Research Funds for the Central Universities (No. 3132013091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhu, X., Zhang, X. et al. Photodegradation of Oxytetracycline in the Presence of Dissolved Organic Matter and Chloride Ions: Importance of Reactive Chlorine Species. Water Air Soil Pollut 230, 235 (2019). https://doi.org/10.1007/s11270-019-4293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4293-8

Keywords

Navigation