Water, Air, & Soil Pollution

, 230:211 | Cite as

Study on Mercury Methylation in the Amazonian Rivers in Flooded Areas for Hydroelectric Use

  • Vinicius M. Gomes
  • Ademir dos Santos
  • Luiz F. Zara
  • Dayana D. Ramos
  • Juliane C. Forti
  • Diovany D. Ramos
  • Felipe A. SantosEmail author


This study aimed to estimate in laboratory the temporal production of methylmercury during the filling of reservoirs of hydropower plants and to correlate it to the ecosystem of different locations in northern Brazil: Jirau hydropower plant in the Madeira River in the state of Rondônia (white waters—under construction), Cana Brava hydropower plant in the Tocantins River in the state of Goiás (clear waters—completed), and the Negro River in the Amazon (black waters—comparative). After collecting water, soil, and sediment samples in the regions mentioned, a microcosm was created to reproduce the conditions close to those found in nature. Water/soil/Hg0/Hg2+ and water/sediment/Hg0/Hg2+ were added to glass recipients. Next, methylmercury concentration was monitored by atomic fluorescence spectrometry, total organic carbon by TOC 5000A, and physical and chemical parameters such as pH, redox potential, and dissolved oxygen, for 25 days. The results obtained allow concluding that organic matter plays an important role, providing excess methyl groups to react with inorganic Hg and form organic Hg. The Negro River, which has higher contents of organic matter in its soil, water, and sediment, presented higher potential of mercury methylation in both experiments performed, followed by rivers Madeira and Tocantins.


Amazon CVAFS Mercury methylation Total organic carbon 



This work was supported by the São Paulo Research Foundation - FAPESP [grant numbers: 2018/18693-6] and Brazilian National Council for Scientific and Technological Development – CNPq.


  1. Akagi, H., Malm, O., Kinjo, Y., Harada, M., Branches, F. J. P., Pfeiffer, W. C., & Kato, H. (1995). Methylmercury pollution in the Amazon, Brazil. Science of The Total Environment, 175(2), 85–95.Google Scholar
  2. ANNEL – National Electric Energy Agency. (2019). Power plants and generating plants - Generation Information Bank. Accessed 25 may 2019.
  3. Bastos, M. O., & Lacerda, L. D. (2004). A contaminação por mercúrio na bacia do Rio Madeira: uma breve revisão. Geochimica Brasiliensis, 18(2), 99–114.Google Scholar
  4. Bisinoti, M. C., & Jardim, W. F. (2004a). O Comportamento do metilmercúrio (MetilHg) no ambiente. Química Nova, 27(4), 593–600.CrossRefGoogle Scholar
  5. Bisinoti, M. C., & Jardim, W. F. (2004b). Productionof organic mercuryfrom Hg0: experiments using microcosms. Brazilian Chemical Society, 242(14), 244–248.Google Scholar
  6. Bloom, N. S., & Effler, S. W. (1990). Seasonal variability in the mercury speciation of Onondaga Lake (New York). Water, Air, and Soil Pollution, 53(3), 251–260.Google Scholar
  7. Cano, T. M. (2014). Efeitos deletérios e teratogênicos da exposição ao mercúrio - revisão da literatura. Revista da Associação Médica Brasileira, 3(3), 288–300.Google Scholar
  8. Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.Google Scholar
  9. Davidson, P. W., Myers, G. J., Cox, C., Shamlaye, C., Choisy, O., Sloane-Reeves, J., Cernchiari, E., Marsh, D. O., Berlin, M., Tanner, M., & Clarkson, T. W. (1995). Neurodevelopmental test selection, administration, and performance in the main Seychelles child development study. Neurotoxicology, 16(4), 665–676.Google Scholar
  10. Edmonds, S., O’Driscoll, N., Hillier, K., Atwood, J. L., & Evers, D. (2012). Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environmental Pollution, 171, 148–154.CrossRefGoogle Scholar
  11. Fadini, P. S., & Jardim, W. F. (2001). Is the Negro river basin (Amazon) impacted by naturally occurring mercury? Science of the Total Environmental, 275(3), 71–82.CrossRefGoogle Scholar
  12. Figueiredo, N. L., Canário, J., O’Driscoll, N. J., Duarte, A., & Carvalho, C. (2016). Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety, 124, 60–67.CrossRefGoogle Scholar
  13. Gibbs, R. J. (1967). The geochemistry if the Amazon river system. Part I - the factors that control the salinity and the composition and concentration of the suspended solids. Geological Society of America Bulletin, 78(10), 1203–1232.CrossRefGoogle Scholar
  14. Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Jr., Bailey, K. A., & Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820.CrossRefGoogle Scholar
  15. Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1–24.CrossRefGoogle Scholar
  16. Harmon, S. M., King, J. K., Gladden, J. B., Chandler, G. T., & Newman, L. A., (2005). Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate. Chemosphere, 59(2), 227–233.Google Scholar
  17. Hintelmann, H., Falter, R., Ilgen, G., & Evans, R. D. (1997). Determination of artifactual formation of monomethylmercury (CH3Hg+) in environmental samples using stable Hg2+ isotopes with ICP-MS detection: calculation of contents applying species specific isotope addition. Fresenius Journal of Analytical Chemistry, 358(3), 363–370.CrossRefGoogle Scholar
  18. Lima, E. R. Z., Colon, J. C., & Souza, M. T. (2009). Alterações auditivas em trabalhadores expostos a mercúrio. Revista CEFAC, 11(suppl 1).
  19. Macalady, J. L., Mack, E. E., Nelson, D. C., & Scow, K. M. (2000). Sediment Microbial Community Structure and Mercury Methylation in Mercury-Polluted Clear Lake, California. Applied and Environmental Microbiology, 66(4), 1479–1488.Google Scholar
  20. McClain, M. E., Richey, J. E., & Brandes, J. A. (1997). Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Global Biogeochemical Cycles, 11(3), 295–311.CrossRefGoogle Scholar
  21. Miranda, J. C., & Mazzoni, R. (2009). Estrutura e persistência temporal da comunidade de peixes de três riachos do Alto Rio Tocantins GO. Biota Neotropica, 9(4), 71–78.CrossRefGoogle Scholar
  22. MIretzky, P., Bisinoti, M. C., Jardim, W. F., & Rocha, J. C. (2005). Factors affeting Hg (II) adsorption in soils from the Rio Negro basin (Amazon). Quimica Nova, 28(3), 438–443.CrossRefGoogle Scholar
  23. Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566.Google Scholar
  24. Oliveira, L. C., Serudo, R. L., Botero, W. G., Mendonça, A. G. R., Santos, A., Rocha, J. C., & Carvalho Neto, F. S. (2007). Distribuição de mercúrio em diferentes solos da Bacia do Médio Rio Negro-AM: influência da matéria orgânica no ciclo biogeoquímico do mercúrio. Química Nova, 30(2), 274–280.CrossRefGoogle Scholar
  25. Olson, B. H., & Cooper, R. C. (1975). Comparison of aerobic and anaerobic methylation of mercuric chloride by San Francisco bay sediments. Water Research, 10(2), 113–116.CrossRefGoogle Scholar
  26. Salomons, W., & Forstner, V. (1984). Metals in hidrocycle. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  27. Silva, L. A., & Scariot, A. (2003). Composição florística e estrutura da comunidade arbórea em uma floresta estacional decidual em afloramento calcário, Fazenda São José, São Domingos, GO, bacia do rio Paranã. Acta Botanica Brasilica, 17(2), 305–313.CrossRefGoogle Scholar
  28. Spangler, W. J., Spigarelli, J. L., Rose, J. M., & Miller, H. M. (1973). Methylmercury: bacterial degradation in lake sediments. Science, 180(4082), 192–193.CrossRefGoogle Scholar
  29. Watanabe, C. H., Monteiro, A. S. C., Gontijo, E. S. J., Lira, V. S., Bueno, C. C., Kumar, N. T., Fracácio, R., & Rosa, H. A. (2017). Toxicity assessment of arsenic and cobalto in the presence of aquatic humic substances of different molecular sizes. Ecotoxicology and Environmental Safety, 139(1–8).Google Scholar
  30. Zhao, L., Chen, H., Lu, X., Lin, H., Christensen, A. G., Pierce, E. M., & Gu, B. (2017). Contrasting effects of dissolved organic matter on mercury methylation by geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environmental Science & Technology, 51(18), 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinicius M. Gomes
    • 1
  • Ademir dos Santos
    • 2
  • Luiz F. Zara
    • 3
  • Dayana D. Ramos
    • 4
  • Juliane C. Forti
    • 5
  • Diovany D. Ramos
    • 6
  • Felipe A. Santos
    • 5
    Email author
  1. 1.University of Western São Paulo/UnoestePresidente PrudenteBrazil
  2. 2.Chemistry InstituteSão Paulo State University/UNESPAraraquaraBrazil
  3. 3.University of Brasilia/UnBPlanaltinaBrazil
  4. 4.Federal Institute of São PauloTupãBrazil
  5. 5.School of Science and EngineeringSão Paulo State University/UNESPTupãBrazil
  6. 6.School of EducationFederal University of Mato Grosso SulCampo GrandeBrazil

Personalised recommendations