Skip to main content

Advertisement

Log in

Study on Mercury Methylation in the Amazonian Rivers in Flooded Areas for Hydroelectric Use

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to estimate in laboratory the temporal production of methylmercury during the filling of reservoirs of hydropower plants and to correlate it to the ecosystem of different locations in northern Brazil: Jirau hydropower plant in the Madeira River in the state of Rondônia (white waters—under construction), Cana Brava hydropower plant in the Tocantins River in the state of Goiás (clear waters—completed), and the Negro River in the Amazon (black waters—comparative). After collecting water, soil, and sediment samples in the regions mentioned, a microcosm was created to reproduce the conditions close to those found in nature. Water/soil/Hg0/Hg2+ and water/sediment/Hg0/Hg2+ were added to glass recipients. Next, methylmercury concentration was monitored by atomic fluorescence spectrometry, total organic carbon by TOC 5000A, and physical and chemical parameters such as pH, redox potential, and dissolved oxygen, for 25 days. The results obtained allow concluding that organic matter plays an important role, providing excess methyl groups to react with inorganic Hg and form organic Hg. The Negro River, which has higher contents of organic matter in its soil, water, and sediment, presented higher potential of mercury methylation in both experiments performed, followed by rivers Madeira and Tocantins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi, H., Malm, O., Kinjo, Y., Harada, M., Branches, F. J. P., Pfeiffer, W. C., & Kato, H. (1995). Methylmercury pollution in the Amazon, Brazil. Science of The Total Environment, 175(2), 85–95.

  • ANNEL – National Electric Energy Agency. (2019). Power plants and generating plants - Generation Information Bank. http://www2.aneel.gov.br/scg/Consulta_Empreendimento.asp. Accessed 25 may 2019.

  • Bastos, M. O., & Lacerda, L. D. (2004). A contaminação por mercúrio na bacia do Rio Madeira: uma breve revisão. Geochimica Brasiliensis, 18(2), 99–114.

    Google Scholar 

  • Bisinoti, M. C., & Jardim, W. F. (2004a). O Comportamento do metilmercúrio (MetilHg) no ambiente. Química Nova, 27(4), 593–600.

    Article  CAS  Google Scholar 

  • Bisinoti, M. C., & Jardim, W. F. (2004b). Productionof organic mercuryfrom Hg0: experiments using microcosms. Brazilian Chemical Society, 242(14), 244–248.

    Google Scholar 

  • Bloom, N. S., & Effler, S. W. (1990). Seasonal variability in the mercury speciation of Onondaga Lake (New York). Water, Air, and Soil Pollution, 53(3), 251–260.

    CAS  Google Scholar 

  • Cano, T. M. (2014). Efeitos deletérios e teratogênicos da exposição ao mercúrio - revisão da literatura. Revista da Associação Médica Brasileira, 3(3), 288–300.

    Google Scholar 

  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.

    Article  CAS  Google Scholar 

  • Davidson, P. W., Myers, G. J., Cox, C., Shamlaye, C., Choisy, O., Sloane-Reeves, J., Cernchiari, E., Marsh, D. O., Berlin, M., Tanner, M., & Clarkson, T. W. (1995). Neurodevelopmental test selection, administration, and performance in the main Seychelles child development study. Neurotoxicology, 16(4), 665–676.

    CAS  Google Scholar 

  • Edmonds, S., O’Driscoll, N., Hillier, K., Atwood, J. L., & Evers, D. (2012). Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environmental Pollution, 171, 148–154.

    Article  CAS  Google Scholar 

  • Fadini, P. S., & Jardim, W. F. (2001). Is the Negro river basin (Amazon) impacted by naturally occurring mercury? Science of the Total Environmental, 275(3), 71–82.

    Article  CAS  Google Scholar 

  • Figueiredo, N. L., Canário, J., O’Driscoll, N. J., Duarte, A., & Carvalho, C. (2016). Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety, 124, 60–67.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1967). The geochemistry if the Amazon river system. Part I - the factors that control the salinity and the composition and concentration of the suspended solids. Geological Society of America Bulletin, 78(10), 1203–1232.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Jr., Bailey, K. A., & Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820.

    Article  CAS  Google Scholar 

  • Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1–24.

    Article  CAS  Google Scholar 

  • Harmon, S. M., King, J. K., Gladden, J. B., Chandler, G. T., & Newman, L. A., (2005). Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate. Chemosphere, 59(2), 227–233.

  • Hintelmann, H., Falter, R., Ilgen, G., & Evans, R. D. (1997). Determination of artifactual formation of monomethylmercury (CH3Hg+) in environmental samples using stable Hg2+ isotopes with ICP-MS detection: calculation of contents applying species specific isotope addition. Fresenius Journal of Analytical Chemistry, 358(3), 363–370.

    Article  CAS  Google Scholar 

  • Lima, E. R. Z., Colon, J. C., & Souza, M. T. (2009). Alterações auditivas em trabalhadores expostos a mercúrio. Revista CEFAC, 11(suppl 1). https://doi.org/10.1590/S1516-18462009005000003.

  • Macalady, J. L., Mack, E. E., Nelson, D. C., & Scow, K. M. (2000). Sediment Microbial Community Structure and Mercury Methylation in Mercury-Polluted Clear Lake, California. Applied and Environmental Microbiology, 66(4), 1479–1488.

  • McClain, M. E., Richey, J. E., & Brandes, J. A. (1997). Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Global Biogeochemical Cycles, 11(3), 295–311.

    Article  Google Scholar 

  • Miranda, J. C., & Mazzoni, R. (2009). Estrutura e persistência temporal da comunidade de peixes de três riachos do Alto Rio Tocantins GO. Biota Neotropica, 9(4), 71–78.

    Article  Google Scholar 

  • MIretzky, P., Bisinoti, M. C., Jardim, W. F., & Rocha, J. C. (2005). Factors affeting Hg (II) adsorption in soils from the Rio Negro basin (Amazon). Quimica Nova, 28(3), 438–443.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566.

  • Oliveira, L. C., Serudo, R. L., Botero, W. G., Mendonça, A. G. R., Santos, A., Rocha, J. C., & Carvalho Neto, F. S. (2007). Distribuição de mercúrio em diferentes solos da Bacia do Médio Rio Negro-AM: influência da matéria orgânica no ciclo biogeoquímico do mercúrio. Química Nova, 30(2), 274–280.

    Article  Google Scholar 

  • Olson, B. H., & Cooper, R. C. (1975). Comparison of aerobic and anaerobic methylation of mercuric chloride by San Francisco bay sediments. Water Research, 10(2), 113–116.

    Article  Google Scholar 

  • Salomons, W., & Forstner, V. (1984). Metals in hidrocycle. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Silva, L. A., & Scariot, A. (2003). Composição florística e estrutura da comunidade arbórea em uma floresta estacional decidual em afloramento calcário, Fazenda São José, São Domingos, GO, bacia do rio Paranã. Acta Botanica Brasilica, 17(2), 305–313.

    Article  Google Scholar 

  • Spangler, W. J., Spigarelli, J. L., Rose, J. M., & Miller, H. M. (1973). Methylmercury: bacterial degradation in lake sediments. Science, 180(4082), 192–193.

    Article  CAS  Google Scholar 

  • Watanabe, C. H., Monteiro, A. S. C., Gontijo, E. S. J., Lira, V. S., Bueno, C. C., Kumar, N. T., Fracácio, R., & Rosa, H. A. (2017). Toxicity assessment of arsenic and cobalto in the presence of aquatic humic substances of different molecular sizes. Ecotoxicology and Environmental Safety, 139(1–8).

  • Zhao, L., Chen, H., Lu, X., Lin, H., Christensen, A. G., Pierce, E. M., & Gu, B. (2017). Contrasting effects of dissolved organic matter on mercury methylation by geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environmental Science & Technology, 51(18), 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation - FAPESP [grant numbers: 2018/18693-6] and Brazilian National Council for Scientific and Technological Development – CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Santos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, V.M., dos Santos, A., Zara, L.F. et al. Study on Mercury Methylation in the Amazonian Rivers in Flooded Areas for Hydroelectric Use. Water Air Soil Pollut 230, 211 (2019). https://doi.org/10.1007/s11270-019-4261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4261-3

Keywords

Navigation