Natural Sawdust as Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution

Abstract

This paper deals with the adsorption of an anionic dye, Eriochrome Black T (EBT), from aqueous solutions onto sawdust, which is a natural, eco-friendly, widespread, and a low-cost bio sorbent. The aim of the work is to append values to the wood industry waste. Thus, sawdust was used as adsorbent in both batch reactor (BR) and fixed bed column (FBC), and various operating parameters influencing the adsorption process were investigated. The kinetic and the equilibrium adsorption results were found to agree with, respectively, the prediction of the pseudo-second-order equation and the Langmuir model. This latter allowed also the determination of the maximum EBT dye adsorbed amount, which was found to be about 40.96 mg EBT per gram of sawdust at pH = 4, corresponding to % dye removal of about 80%. In addition, the influence of various parameters on the dye adsorption, such as the adsorbent dose, the aqueous phase pH, and the initial dye concentration, was also examined. In batch experiments, The EBT adsorbed amount was found to increase either by increasing the amount of sawdust or by decreasing the aqueous phase pH, whereas, in the fixed bed column, the EBT retention was found to increase by decreasing the flow rate of the dye through the column. The overall data indicate that the EBT adsorption is mainly governed by the electrostatic interactions occurring between the adsorbent material and the dye.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aguayo-Villarreal, I. A., Hernández-Montoya, V., Ramírez-López, E. M., Bonilla-Petriciolet, A., & Montes-Morán, M. A. (2016). Effect of surface chemistry of carbons from pine sawdust for the adsorption of acid, basic and reactive dyes and their bio regeneration using Pseudomona putida. Ecological Engineering, 95, 112–118.

    Article  Google Scholar 

  2. Aguiar, J. E., Cecilia, J. A., Tavares, P. A. S., Azevedo, D. C. S., Rodríguez Castellón, E., Lucena, S. M. P., & Silva Junior, I. J. (2017). Adsorption study of reactive dyes onto porous clay heterostructures. Applied Clay Science, 135, 35–44.

    CAS  Article  Google Scholar 

  3. Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M. H., & Hashim, R. (2009). Scavenging behaviour of Meranti sawdust in the removal of methylene blue from aqueous solution. Journal of Hazardous Materials, 170, 357–365.

    CAS  Article  Google Scholar 

  4. Ait Akbour, R., Ait Addi, A. A., Douch, J., Jada, A., & Hamdani, M. (2013). Transport and retention of humic acid through natural quartz sand: Influence of the ionic strength and the nature of divalent cation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 589–598.

    Article  Google Scholar 

  5. Akbour, R. A., Ouachtak, H., Jada, A., Akhouairi, S., Addi, A. A., Douch, J., & Hamdani, M. (2018). Humic acid covered alumina as adsorbent for the removal of organic dye from coloured effluents. Desalination and Water Treatment, 112, 207–217.

    CAS  Article  Google Scholar 

  6. Andrade, L. S., Tasso, T. T., Da Silva, D. L., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2008). On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the reactive Orange 16 dye. Electrochimica Acta, 54, 2024–2030.

    Article  Google Scholar 

  7. Barron-Zambrano, J., Szygula, A., Ruiz, M., Sastre, A. M., & Guibal, E. (2010). Biosorption of reactive black 5 from aqueous solutions by chitosan: Column studies. Journal of Environmental Management, 91, 2669–2675.

    CAS  Article  Google Scholar 

  8. Belaid, K. D., & Kacha, S. (2011). Study of the kinetics and thermodynamics of the adsorption of a basic dye on sawdust. Journal of Water Science, 24, 131–144.

    CAS  Google Scholar 

  9. Das Saha, P., Chakraborty, S., & Chowdhury, S. (2012). Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids and Surfaces B: Biointerface, 92, 262–270.

    CAS  Article  Google Scholar 

  10. Dogan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water Air and Soil Pollution, 120, 229–248.

    CAS  Article  Google Scholar 

  11. Du, W. N., & Chen, S. T. (2017). Photo- and chemo catalytic oxidation of dyes in water. Journal of Environmental Management, 206, 507–515.

    Article  Google Scholar 

  12. Ekramul, K. M., Dhar, K., & Towhid, H. M. (2018). Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. Journal of Genetic Engineering and Biotechnology, 16, 375–380.

    Article  Google Scholar 

  13. El Haouti, R., Ouachtak, H., El Guerdaoui, A., Amedlous, A., Amertaz E., Haounati, R., Ait Addi, A., Akbal, F., El Alem, N., Labd Taha M., (2019). Cationic dyes adsorption by Na-montmorillonite Nano Clay: Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. Journal Molecular Liquids, In press. doi: https://doi.org/10.1016/j.molliq.2019.111139.

    CAS  Article  Google Scholar 

  14. Fabryanty, R., Valencia, C., Edi Soetaredjo, F., NyooPutro, J., Santoso, P. S., Kurniawan, A., Ju, Y. H., & Ismadji, S. (2017). Removal of crystal violet dye by adsorption using bentonite – alginate composite. Journal of Environmental Chemical Engineering, 17, 2213–3437.

    Google Scholar 

  15. Ferreira, M. D. G., Max Dias Ferreira, G., Hespanhol, M. C., Rezende, J. P., Clarissados Santos Pires, A., Vinícius AlvesGurgel, L., & Mendesda Silva, L. H. (2017). Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: A thermodynamic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 531–540.

    CAS  Article  Google Scholar 

  16. Goswami, M., & Phukan, P. (2017). Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering, 5, 3508–3517.

    CAS  Article  Google Scholar 

  17. Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 31, 1062–1067.

    CAS  Article  Google Scholar 

  18. Hameed, B. H. (2009). Evaluation of papaya seed as a novel nonconventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162, 939–994.

    CAS  Article  Google Scholar 

  19. Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579.

    CAS  Article  Google Scholar 

  20. Ho, Y. S., & McKay, G. (1999). Pseudo second order model for sorption processes. Process Biochemistry, 34, 451–465.

    CAS  Article  Google Scholar 

  21. Hosseini, S. A., Vossoughi, M., Mahmoodi, N. M., & Sadrzadeh, M. (2018). Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production, 183, 1197–1206.

    CAS  Article  Google Scholar 

  22. Irfan, M., Butt, T., Imtiaz, N., Abbas, N., Ahmad Khan, R., & Shafique, A. (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10, 2307–2318.

    Article  Google Scholar 

  23. Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z., NawazBhatti, H., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395–407.

    CAS  Article  Google Scholar 

  24. Khan, A., Wanga, X., Gul, K., Khuda, F., Aly, D. Z., & Elseman, A. M. (2018). Microwave-assisted spent black tea leaves as cost-effective and powerful green adsorbent for the efficient removal of Eriochrome black T from aqueous solutions. Egyptian Journal of Basic and Applied Sciences, 5, 171–182.

    Article  Google Scholar 

  25. Khattri, S. D., & Singh, M. K. (2000). Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air and Soil Pollution, 120, 283–294.

    CAS  Article  Google Scholar 

  26. Khattri, S. D., & Singh, M. K. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials, 167, 1089–1094.

    CAS  Article  Google Scholar 

  27. Khemila, B., Merzouk, B., Chouder, A., Zidelkhir, R., Leclerc, J. P., & Lapicque, F. (2018). Removal of a textile dye using photovoltaic electrocoagulation. Sustainable Chemistry and Pharmacy, 7, 27–35.

    Article  Google Scholar 

  28. Kobya, M., Gengec, E., & Demirbas, E. (2016). Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 110, 87–100.

    Article  Google Scholar 

  29. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Setenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  30. Lau, Y. L., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., & Ong, S. A. (2014). Coagulation-flocculation of azo dye acid Orange 7 with green refined laterite soil. Chemical Engineering Journal, 246, 383–390.

    CAS  Article  Google Scholar 

  31. Li, C., Wang, X., Meng, D., & Zhou, L. (2017). Facile synthesis of low-cost magnetic biosorbent from peach gumpolysaccharide for selective and efficient removal of cationic dyes. International Journal of Biological Macromolecules, 107(Pt B), 1871–1878.

    Google Scholar 

  32. Lugo-Lugo, V., Hernandez-Lopez, S., Barrera-Diaz, C., Urena-Nunez, F., & Bilyeu, B. (2009). A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode. Journal of Hazardous Materials, 161, 1255–1264.

    CAS  Article  Google Scholar 

  33. Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138.

    CAS  Article  Google Scholar 

  34. McKay, G., Porter, J. F., & Prasad, G. R. (1999). The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air and Soil Pollution, 114, 423–438.

    CAS  Article  Google Scholar 

  35. Mella, B., Puchana-Rosero, M. J., Costa, D. E. S., & Gutterres, M. (2017). Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. Journal of Molecular Liquids, 242, 137–145.

    CAS  Article  Google Scholar 

  36. Mittal, A., Malviya, A., Kaur, D., Mittal, J., & Kurup, L. (2007). Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 148, 229–240.

    CAS  Article  Google Scholar 

  37. Muthuraman, G., & Teng, T. T. (2009). Extraction and recovery of rhodamine B, methyl violet and methylene blue from industrial wastewater using D2EHPA as an extractant. Journal of Industrial and Engineering Chemistry, 5, 841–846.

    Article  Google Scholar 

  38. Nazari, G., Abolghasemi, H., Esmaieli, M., & Pouya, E. S. (2016). Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Applied Surface Science, 375, 144–153.

    CAS  Article  Google Scholar 

  39. Nguyen, T. H., You, S. J., & Chao, H. P. (2017). Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. Journal of Environmental Management, 188, 322–336.

    Google Scholar 

  40. Olgun, A., Atar, N., & Wang, S. (2013). Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity. Chemical Engineering Journal, 222, 108–119.

    CAS  Article  Google Scholar 

  41. Ouachtak, H., Ait Akbour, R., Douch, J., Jada, A., & Hamdani, M. (2015). Removal from water and adsorption onto natural quartz sand of hydroquinone. Journal of Encapsulation and Adsorption Sciences, 5, 131–143.

    CAS  Article  Google Scholar 

  42. Ouachtak, H., Akhouairi, S., Ait Addi, A., Ait Akbour, R., Jada, A., Douch, J., & Hamdani, M. (2018). Mobility and retention of phenolic acids through a goethite-coated quartz sand column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 9–19.

    CAS  Article  Google Scholar 

  43. Reddy, S. M. C., & Nirmala, V. (2014). Bengal gram seed husk as an adsorbent for the removal of dyes from aqueous solutions – Column studies. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.08.026.

  44. Reddy, S. M. C., & Nirmala, V. (2017). Bengal gram seed husk as an adsorbent for the removal of dyes from aqueous solutions – Equilibrium studies. Arabian Journal of Chemistry, 10, 2406–2416.

    Article  Google Scholar 

  45. Salleh, M. A. M., Karim, D. K., Abdul, W. A. W., & Azni, I. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.

    CAS  Article  Google Scholar 

  46. Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q., & Kang, Q. (2009). Adsorption kinetics and isothermof anionic dyes onto organo-bentonite from single and multisolute systems. Journal of Hazardous Materials, 172, 99–107.

    CAS  Article  Google Scholar 

  47. Suyog, N. J., & Gogate, P. R. (2018). Efficient removal of acid green 25 dye from wastewater using activated Prunus Dulcis as bio sorbent: Batch and column studies. Journal of Environmental Management, 210, 226–238.

    Google Scholar 

  48. Vieira, M. L. G., Esquerdo, V. M., Nobre, L. R., Dotto, G. L., & Pinto, L. A. A. (2014). Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3387–3393.

    CAS  Article  Google Scholar 

  49. Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184.

    CAS  Article  Google Scholar 

  50. Yang, R., Li, L., Li, A., & Yang, H. (2018). Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 151, 20–28.

    CAS  Article  Google Scholar 

  51. Zahrim, A. Y., & Hilal, N. (2013). Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration. Water Resources and Industry, 3, 23–34.

    Article  Google Scholar 

  52. Zhang, W., Liu, W., Zhang, J., Zhao, H., Zhang, Y., Xie Quan, X., & Jin, Y. (2012). Characterization of acute toxicity, genotoxicity and oxidative stress posed by textile effluent on zebrafish. Journal of Environmental Sciences, 24, 2019–2027.

    CAS  Article  Google Scholar 

  53. Zhou, T., Lu, W., Liu, L., Zhu, H., Jiao, Y., Zhang, S., & Han, R. (2015). Effective adsorption of light green anionic dye from solution by CPB modified peanut in column mode. Journal of Molecular Liquids, 211, 909–914.

    CAS  Article  Google Scholar 

  54. Zhou, J., Lü, K. F., & Luo, J. J. (2017). Efficient removal of organic dyes from aqueous solution by rapid adsorption onto polypyrrole–based composites. Journal of Cleaner Production, 167, 739–748.

    CAS  Article  Google Scholar 

  55. Zollinger H (1987). Colour chemistry – synthesis. Properties of Organic Dyes and Pigments VCH Publishers, New York. pp. 92–100.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amane Jada.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akhouairi, S., Ouachtak, H., Addi, A.A. et al. Natural Sawdust as Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut 230, 181 (2019). https://doi.org/10.1007/s11270-019-4234-6

Download citation

Keywords

  • Adsorption isotherms
  • Adsorption kinetics
  • Sawdust
  • Eriochrome black T
  • Batch reactor
  • Fixed bed column