Skip to main content
Log in

Immobilization of Copper from Aqueous Solution and Contaminated Sediment Using Modified Clinoptilolite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficiency and mechanism of modified clinoptilolites immobilizing Cu from aqueous solutions and contaminated sediments were investigated. The results showed that the clinoptilolite modified by lanthanum chloride (LaCl3) at a particle size of 0.5–1.0 mm could remove 65% of Cu2+ from 100 mg L−1 of Cu2+ solutions at the sorbent:solution mass ratio of 1:100. The equilibrium data fitted well to the Langmuir isotherm model with a maximum adsorption capacity of 21.09 mg Cu2+ g−1 at 25 °C. The Dubinin–Radushkevich adsorption model indicated that the adsorption of Cu2+ by modified clinoptilolite can be identified as chemisorption. The pseudo-second-order model could well represent the kinetics of the adsorption. The results of toxicity characteristic leaching procedure (TCLP) and Community Bureau of Reference (BCR) sequential extraction procedure showed that the modified clinoptilolite could reduce the leaching of Cu in the sediment and effectively transform Cu from the acid extractable or reducible fractions to the oxidizable or residual fractions. The presented work showed that the modified clinoptilolite holds great potential to remove Cu2+ from water, and to stabilize Cu-contaminated sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adriano, D., Page, A., Elseewi, A., Chang, A., & Straughan, I. (1980). Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review 1. Journal of Environmental Quality, 9(3), 333–344.

    Article  CAS  Google Scholar 

  • Agouborde, L., & Navia, R. (2009). Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. Journal of Hazardous Materials, 167(1), 536–544. https://doi.org/10.1016/j.jhazmat.2009.01.027.

    Article  CAS  Google Scholar 

  • Aljerf, L. (2018). High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management, 225, 120–132.

    Article  CAS  Google Scholar 

  • Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E. F., Velosa, A., & Rocha, F. (2016). The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science, 126, 141–152.

    Article  Google Scholar 

  • Bao, J., Wang, L., & Xiao, M. (2016). Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials. Environmental Science and Pollution Research, 23(9), 8294–8301. https://doi.org/10.1007/s11356-016-6184-5.

    Article  CAS  Google Scholar 

  • Barjoveanu, G., De Gisi, S., Casale, R., Todaro, F., Notarnicola, M., & Teodosiu, C. (2018). A life cycle assessment study on the stabilization/solidification treatment processes for contaminated marine sediments. Journal of Cleaner Production, 201 391–402. https://doi.org/10.1016/j.jclepro.2018.08.053.

    Article  CAS  Google Scholar 

  • Bi, J., Liu, M., Song, C., Wang, X., & Guo, X. (2011). C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts. Applied Catalysis B: Environmental, 107(1), 68–76. https://doi.org/10.1016/j.apcatb.2011.06.038.

    Article  CAS  Google Scholar 

  • Bouhamed, F., Elouear, Z., & Bouzid, J. (2012). Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 741–749. https://doi.org/10.1016/j.jtice.2012.02.011.

    Article  CAS  Google Scholar 

  • Cao, C. Y., Liang, C. H., Yin, Y., & Du, L. Y. (2017). Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials, 329, 222–229.

    Article  CAS  Google Scholar 

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere, 87(8), 945–953.

    Article  CAS  Google Scholar 

  • Chen, Q. Y., Tyrer, M., Hills, C. D., Yang, X. M., & Carey, P. (2009). Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Management, 29(1), 390–403. https://doi.org/10.1016/j.wasman.2008.01.019.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Gao, J. b., Yuan, Y. Q., Ma, J., & Yu, S. (2016). Relationship between heavy metal contents and clay mineral properties in surface sediments: implications for metal pollution assessment. Continental Shelf Research, 124, 125–133. https://doi.org/10.1016/j.csr.2016.06.002.

    Article  Google Scholar 

  • De Witte, B., Ruttens, A., Ampe, B., Waegeneers, N., Gauquie, J., Devriese, L., Cooreman, K., & Parmentier, K. (2016). Chemical analyses of dredged spoil disposal sites at the Belgian part of the North Sea. Chemosphere, 156, 172–180.

    Article  Google Scholar 

  • Demiral, H., & Güngör, C. (2016). Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124, 103–113. https://doi.org/10.1016/j.jclepro.2016.02.084.

    Article  CAS  Google Scholar 

  • Demirbas, E., Dizge, N., Sulak, M. T., & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal, 148(2), 480–487. https://doi.org/10.1016/j.cej.2008.09.027.

    Article  CAS  Google Scholar 

  • Egashira, R., Tanabe, S., & Habaki, H. (2012). Adsorption of heavy metals in mine wastewater by Mongolian natural zeolite. Procedia Engineering, 42, 49–57.

    Article  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309–314. https://doi.org/10.1016/j.jcis.2004.08.028.

    Article  CAS  Google Scholar 

  • Fathollahzadeh, H., Kaczala, F., Bhatnagar, A., & Hogland, W. (2014). Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environmental Science and Pollution Research, 21(4), 2455–2464.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.

    Article  CAS  Google Scholar 

  • Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1), 247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156.

    Article  CAS  Google Scholar 

  • Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., & Cao, D. (2018). Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology, 194, 462–469.

    Article  CAS  Google Scholar 

  • Inglezakis, V., Fyrillas, M., & Stylianou, M. (2018). Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites. Microporous and Mesoporous Materials, 266, 164–176.

    Article  CAS  Google Scholar 

  • Ismail, A., Kawde, A., Muraza, O., Sanhoob, M. A., Aziz, M. A., & Al-Betar, A. R. (2019). Modified lanthanum–zeolite for sensitive electrochemical detection of heavy metal ions. Arabian Journal for Science and Engineering, 44(1), 217–226. https://doi.org/10.1007/s13369-018-3486-6.

    Article  CAS  Google Scholar 

  • Ji, G., Ni, J., & Sun, T. (2004). Progresses in remediation technologies for persistent toxic substances polluted sediments. Acta Genetica Sinica, 23(4), 118–121.

    Google Scholar 

  • Kadirvelu, K., Faur-Brasquet, C., & Cloirec, P. L. (2000). Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir, 16(22), 8404–8409. https://doi.org/10.1021/la0004810.

    Article  CAS  Google Scholar 

  • Leinonen, H., & Lehto, J. (2001). Purification of metal finishing waste waters with zeolites and activated carbons. Waste Management & Research, 19(1), 45–57. https://doi.org/10.1177/0734242x0101900106.

    Article  CAS  Google Scholar 

  • Lin, J., Wang, H., Zhan, Y., & Chen, D. (2016). Adsorption of phosphate by lanthanum hydroxide/natural zeolite composites from low concentration phosphate solution. Environmental Science (in Chinese with English Abstract), 37(1), 208–219.

    CAS  Google Scholar 

  • Liu, X., & Wang, R. (2017). Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite. Journal of Hazardous Materials, 326, 157–164.

    Article  CAS  Google Scholar 

  • Matouq, M., Jildeh, N., Qtaishat, M., Hindiyeh, M., & Al Syouf, M. Q. (2015). The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. Journal of Environmental Chemical Engineering, 3(2), 775–784. https://doi.org/10.1016/j.jece.2015.03.027.

    Article  CAS  Google Scholar 

  • Motsi, T., Rowson, N., & Simmons, M. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48.

    Article  CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Kandasamy, J., Naidu, R., & Vigneswaran, S. (2018). Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environmental Science and Pollution Research, 25(21), 20430–20438. https://doi.org/10.1007/s11356-017-9610-4.

    Article  CAS  Google Scholar 

  • Pan, Y., Yang, L., Zhou, J., Liu, J., Qian, G., Ohtsuka, N., Motegi, M., Oh, K., et al. (2013). Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere, 92(7), 765–771. https://doi.org/10.1016/j.chemosphere.2013.04.003.

    Article  CAS  Google Scholar 

  • Peng, J., Song, Y., Yuan, P., Cui, X., & Qiu, G. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640.

    Article  CAS  Google Scholar 

  • Petrus, R., & Warchoł, J. (2003). Ion exchange equilibria between clinoptilolite and aqueous solutions of Na+/Cu2+, Na+/Cd2+ and Na+/Pb2+. Microporous and Mesoporous Materials, 61(1), 137–146. https://doi.org/10.1016/S1387-1811(03)00361-5.

    Article  CAS  Google Scholar 

  • Pizarro, J., Castillo, X., Jara, S., Ortiz, C., Navarro, P., Cid, H., Rioseco, H., Barros, D., et al. (2015). Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel, 156, 96–102. https://doi.org/10.1016/j.fuel.2015.04.030.

    Article  CAS  Google Scholar 

  • Shilina, A., Bakhtin, V., Burukhin, S., & Askhadullin, S. (2017). Sorption of cations of heavy metals and radionuclides from the aqueous media by new synthetic zeolite-like sorbent. Nuclear Energy and Technology, 3(4), 249–254.

    Article  Google Scholar 

  • Sounthararajah, D., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2015). Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. International Journal of Environmental Research and Public Health, 12(9), 10475–10489. https://doi.org/10.3390/ijerph120910475.

    Article  CAS  Google Scholar 

  • Sun, C., Qiu, J., Zhang, Z., Marhaba, T. F., Zhang, Y., & Zhang, W. (2016). Characterization of citric acid-modified clam shells and application for aqueous lead (II) removal. Water, Air, and Soil Pollution, 227(9), 298. https://doi.org/10.1007/s11270-016-2975-z.

    Article  CAS  Google Scholar 

  • Tomasevic, D. D., Dalmacija, M. B., Prica, M. D., Dalmacija, B. D., Kerkez, D. V., Bečelić-Tomin, M. R., & Roncevic, S. D. (2013). Use of fly ash for remediation of metals polluted sediment–green remediation. Chemosphere, 92(11), 1490–1497.

    Article  CAS  Google Scholar 

  • Visa, M. (2016). Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technology, 294, 338–347.

    Article  CAS  Google Scholar 

  • Wang, S. J., Salihu, M., Rushiti, F., Bala, L., & Modvig, J. (2010). Survivors of the war in the northern Kosovo: violence exposure, risk factors and public health effects of an ethnic conflict. Conflict and Health, 4(1), 11. https://doi.org/10.1186/1752-1505-4-11.

    Article  Google Scholar 

  • Wang, W., Pan, M., Qin, Y., Wang, L., & Song, L. (2011a). Effects of surface acidity on the adsorption desulfurization of Cu(I) Y zeolites. Acta Physico-Chimica Sinica, 27(5), 1176–1180.

    CAS  Google Scholar 

  • Wang, X. J., Xu, X. M., Liang, X., Wang, Y., Liu, M., Wang, X., Xia, S. Q., Zhao, J. F., et al. (2011b). Adsorption of copper(II) onto sewage sludge-derived materials via microwave irradiation. Journal of Hazardous Materials, 192(3), 1226–1233.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, H., Jin, F., & Al-Tabbaa, A. (2015). The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil. Journal of Hazardous Materials, 285, 46–52.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Dai, J. G., Wang, L., Tsang, D. C., & Poon, C. S. (2018). Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere, 190, 90–96.

    Article  CAS  Google Scholar 

  • Wen, J., & Zeng, G. (2018). Chemical and biological assessment of Cd-polluted sediment for land use: the effect of stabilization using chitosan-coated zeolite. Journal of Environmental Management, 212, 46–53.

    Article  CAS  Google Scholar 

  • Wen, J., Yi, Y., & Zeng, G. (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. Journal of Environmental Management, 178, 63–69.

    Article  CAS  Google Scholar 

  • Xie, J., Wang, Z., Fang, D., Li, C., & Wu, D. (2014). Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. Journal of Colloid and Interface Science, 423, 13–19.

    Article  CAS  Google Scholar 

  • Yan, M., Zeng, G., Li, X., He, J., Chen, G., Huang, D., Tang, L., Lai, C., et al. (2017). Incentive effect of bentonite and concrete admixtures on stabilization/solidification for heavy metal-polluted sediments of Xiangjiang River. Environmental Science and Pollution Research, 24(1), 892–901. https://doi.org/10.1007/s11356-016-7527-y.

    Article  CAS  Google Scholar 

  • Yi, Y., Wen, J., Zeng, G., Zhang, T., Huang, F., Qin, H., & Tian, S. (2017). A comparative study for the stabilisation of heavy metal contaminated sediment by limestone, MnO2 and natural zeolite. Environmental Science and Pollution Research, 24(1), 795–804.

    Article  CAS  Google Scholar 

  • Yu, G., Lei, H., Bai, T., Li, Z., Yu, Q., & Song, X. (2009). In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments. Journal of Environmental Sciences, 21(7), 877–883.

    Article  CAS  Google Scholar 

  • Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W., & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884–891. https://doi.org/10.1016/j.chemosphere.2017.06.040.

    Article  CAS  Google Scholar 

  • Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C. L., Franscescon, F., Freitas, L., de Mello, J. M. M., Fiori, M. A., et al. (2017). Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Safety and Environmental Protection, 105, 194–200.

    Article  CAS  Google Scholar 

  • Zendelska, A., Golomeova, M., Blazev, K., Krstev, B., Golomeov, B., & Krstev, A. (2015). Adsorption of copper ions from aqueous solutions on natural zeolite. Environment Protection Engineering, 41(4), 17–36. https://doi.org/10.5277/epe150402.

    Article  Google Scholar 

  • Zhang, H., Li, A., Zhang, W., & Shuang, C. (2016). Combination of Na-modified zeolite and anion exchange resin for advanced treatment of a high ammonia–nitrogen content municipal effluent. Journal of Colloid and Interface Science, 468, 128–135.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Shandong Province (No. ZR2018MEE045), Foundation of remediation of contaminated sediment in Shandong Province (No. 2017-HCZBLY-003, No. SDHBYF-2012-14), Shandong Key Scientific and Technical Innovation Project (No. 2018YFJH0902), and Research Project of Shandong Environmental Protection Department (No. SDDPPS2018C(402001)006). Yanhao Zhang received support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang or Wen Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cao, G., Zhang, Z. et al. Immobilization of Copper from Aqueous Solution and Contaminated Sediment Using Modified Clinoptilolite. Water Air Soil Pollut 230, 184 (2019). https://doi.org/10.1007/s11270-019-4231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4231-9

Keywords

Navigation