Skip to main content
Log in

Hybrid Carbon Nanochromium Composites Prepared from Chrome-Tanned Leather Shavings for Dye Adsorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Every year, the leather tanning industry produces substantial quantities of residues such as chrome-tanned leather shavings (CTLS), which contain considerable amounts of Cr(III) salts. The residues have no particular value and under natural conditions can transform into toxic Cr(VI) wastes. The objective of the present work is to evaluate the transformation of these residues into carbon adsorbents at low temperatures (< 600 °C), using ZnCl2 as an activating agent. The pyrolysis temperature and residence times were studied. The materials were characterized and qualified by Acid Black 210 (AB) adsorption. The results indicated that low amounts of chromium oxides (less than 2% of Cr), in the form of 50–200 nm particles, remained after the synthesis procedure. The deposited chromium oxides were present in (II), (III), and (IV) oxidation states. The low preparation temperatures employed prevented further chromium oxidation to Cr(VI). Maximum surface areas of 439 m2/g were obtained. The materials efficiently removed AB (maximum experimental adsorption capacity of 44.4 mg/g) by means of electrostatic interaction caused by the positively charged distribution of the carbons. The adsorption capacity was not affected by temperature, but pH had a mixed effect due to the combination of a shift in surface charge distribution and dye speciation. The results demonstrated that it is possible to obtain a value-added product, i.e., carbons modified with chromium nanoparticles for dye removal, from a hazardous residue of the tanning industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aboulhassan, M. A., Souabi, S., & Yaacoubi, A. (2008). Pollution reduction and biodegradability index improvement of tannery effluents. International journal of Environmental Science and Technology, 5(1), 11–16.

    Article  CAS  Google Scholar 

  • Abu-Zied, B. M. (2000). Structural and catalytic activity studies of silver/chromia catalysts. Applied Catalysis, A, 198(1), 139–153.

    Article  CAS  Google Scholar 

  • Apte, A. D., Tare, V., & Bose, P. (2006). Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Journal of Hazardous Materials, 128(2), 164–174.

    Article  CAS  Google Scholar 

  • Arcibar-Orozco, J. A., Avalos-Borja, M., & Rangel-Mendez, J. R. (2012). Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water. Environmental Science & Technology, 46(17), 9577–9583.

    Article  CAS  Google Scholar 

  • Aronniemi, M., Sainio, J., & Lahtinen, J. (2005). Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surface Science, 578(1), 108–123.

    Article  CAS  Google Scholar 

  • Bandosz, T. J., & Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Interface Science and Technology (1st ed., pp. 159–229). Kidlington: Elsevier.

    Google Scholar 

  • Bao, Y., & Zhang, G. (2012). Study of adsorption characteristics of methylene blue onto activated carbon made by Salix psammophila. Energy Procedia, 16, 1141–1146.

    Article  CAS  Google Scholar 

  • Basegio, T., Haas, C., Pokorny, A., Bernardes, A. M., & Bergmann, C. P. (2006). Production of materials with alumina and ashes from incineration of chromium tanned leather shavings: environmental and technical aspects. Journal of Hazardous Materials, 137(2), 1156–1164.

    Article  CAS  Google Scholar 

  • Beltrán-Prieto, J. C., Veloz-Rodríguez, R., Pérez-Pérez, M. C., Navarrete-Bolaños, J. L., Vázquez-Nava, E., Jiménez-Islas, H., & Botello-Álvarez, J. E. (2012). Chromium recovery from solid leather waste by chemical treatment and optimisation by response surface methodology. Chemistry and Ecology, 28(1), 89–102.

    Article  CAS  Google Scholar 

  • Berry, F. J., Costantini, N., & Smart, L. E. (2002). Synthesis of chromium-containing pigments from chromium recovered from leather waste. Waste Management, 22(7), 761–772.

    Article  CAS  Google Scholar 

  • Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717–2730.

    Article  CAS  Google Scholar 

  • Brown, D., Cunningham, D., & Glass, W. (1968). The infrared and Raman spectra of chromium (III) oxide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 24(8), 965–968.

    Article  CAS  Google Scholar 

  • Chebeir, M., & Liu, H. (2016). Kinetics and mechanisms of Cr(VI) formation via the oxidation of Cr(III) solid phases by chlorine in drinking water. Environmental Science & Technology, 50(2), 701–710.

    Article  CAS  Google Scholar 

  • Chen, G., Weng, W., Wu, D., Wu, C., Lu, J., Wang, P., & Chen, X. (2004). Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon, 42(4), 753–759.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, X., Cai, S., Chen, J., Xu, W., Jia, H., & Chen, J. (2018). Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chemical Engineering Journal, 334, 768–779.

    Article  CAS  Google Scholar 

  • Ciobanu, G., Harja, M., Rusu, L., Mocanu, A. M., & Luca, C. (2014). Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent. Korean Journal of Chemical Engineering, 31(6), 1021–1027.

    Article  CAS  Google Scholar 

  • Degenhardt, J., & McQuillan, A. J. (1999). Mechanism of oxalate ion adsorption on chromium oxide-hydroxide from pH dependence and time evolution of ATR-IR spectra. Chemical Physics Letters, 311(3), 179–184.

    Article  CAS  Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85(4), 833–846.

    Article  CAS  Google Scholar 

  • Eary, L. E., & Rai, D. (1987). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science & Technology, 21(12), 1187–1193.

    Article  Google Scholar 

  • Erdem, M. (2006). Chromium recovery from chrome shaving generated in tanning process. Journal of Hazardous Materials, 129(1), 143–146.

    Article  CAS  Google Scholar 

  • Fang, C., Jiang, X., Lv, G., Yan, J., & Deng, X. (2018). Nitrogen-containing gaseous products of chrome-tanned leather shavings during pyrolysis and combustion. Waste Management, 78, 553–558.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.

    Article  CAS  Google Scholar 

  • Food (2018). and Agriculture Organization of the United Nations, Statistics (2013). http://www.fao.org/faostat/en/#data/QL. Accessed 31 June 2018.

  • Gascón, J., Téllez, C., Herguido, J., & Menéndez, M. (2003). Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation. Applied Catalysis, A, 248(1), 105–116.

    Article  CAS  Google Scholar 

  • Gibot, P., & Vidal, L. (2010). Original synthesis of chromium (III) oxide nanoparticles. Journal of the European Ceramic Society, 30(4), 911–915.

    Article  CAS  Google Scholar 

  • He, C., & Hu, X. (2011). Anionic dye adsorption on chemically modified ordered mesoporous carbons. Industrial and Engineering Chemistry Research, 50(24), 14070–14083.

    Article  CAS  Google Scholar 

  • Jordan, E. F., Artymyshyn, B., & Feairheller, S. H. (1981). Polymer–leather composites. IV. Mechanical properties of selected acrylic polymer–leather composites. Journal of Applied Polymer Science, 26(2), 463–487.

    Article  CAS  Google Scholar 

  • Kantarli, I. C., & Yanik, J. (2010). Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of Hazardous Materials, 179(1), 348–356.

    Article  CAS  Google Scholar 

  • Kolomaznik, K., Adamek, M., Andel, I., & Uhlirova, M. (2008). Leather waste—potential threat to human health, and a new technology of its treatment. Journal of Hazardous Materials, 160(2), 514–520.

    Article  CAS  Google Scholar 

  • Kong, J., Yue, Q., Huang, L., Gao, Y., Sun, Y., Gao, B., Li, Q., & Wang, Y. (2013a). Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chemical Engineering Journal, 221, 62–71.

    Article  CAS  Google Scholar 

  • Kong, J., Yue, Q., Wang, B., Huang, L., Gao, B., Wang, Y., & Li, Q. (2013b). Preparation and characterization of activated carbon from leather waste microwave-induced pyrophosphoric acid activation. Journal of Analytical and Applied Pyrolysis, 104, 710–713.

    Article  CAS  Google Scholar 

  • Linares-Solano, A., Martín-Gullon, I., Salinas-Martínez de Lecea, C., & Serrano-Talavera, B. (2000). Activated carbons from bituminous coal: effect of mineral matter content. Fuel, 79(6), 635–643.

    Article  CAS  Google Scholar 

  • Lindsay, D. R., Farley, K. J., & Carbonaro, R. F. (2012). Oxidation of CrIII to CrVI during chlorination of drinking water. Journal of Environmental Monitoring, 14(7), 1789–1797.

    Article  CAS  Google Scholar 

  • Liou, T.-H. (2010). Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 158(2), 129–142.

    Article  CAS  Google Scholar 

  • López Valdivieso, A., Reyes Bahena, J. L., Song, S., & Herrera Urbina, R. (2006). Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface. Journal of Colloid and Interface Science, 298(1), 1–5.

    Article  CAS  Google Scholar 

  • Louarrat, M., Rahman, A. N., Bacaoui, A., & Yaacoubi, A. (2017). Removal of chromium Cr (Vi) of tanning effluent with activated carbon from tannery solid wastes. American Journal of Physical Chemistry, 6(6), 103.

    Article  CAS  Google Scholar 

  • Malea, E., Boyatzis, S.C., Kehagia, M. (2010). Cleaning of tanned leather: testing with infra red spectroscopy and SEM-EDAX, Joint Interim-Meeting of Five ICOM. CC Working Groups, Rome, pp. 1.

  • Manera, C., Tonello, A. P., Perondi, D., & Godinho, M. (2018). Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies. Environmental Technology, 1-13.

  • Mwinyihija, M. (2010). Ecotoxicological diagnosis in the tanning industry. New York: Springer.

    Book  Google Scholar 

  • Nieto-Delgado, C., & Rangel-Mendez, J. R. (2011). Production of activated carbon from organic by-products from the alcoholic beverage industry: surface area and hardness optimization by using the response surface methodology. Industrial Crops and Products, 34(3), 1528–1537.

    Article  CAS  Google Scholar 

  • Nieto-Delgado, C., Terrones, M., & Rangel-Mendez, J. R. (2011). Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass and Bioenergy, 35(1), 103–112.

    Article  CAS  Google Scholar 

  • Ola, M., & Nesrine, K. (2010). Utilization of waste leather shavings as filler in paper making. Journal of Applied Polymer Science, 118(3), 1713–1719.

    Google Scholar 

  • Oliveira, L. C. A., Guerreiro, M. C., Gonçalves, M., Oliveira, D. Q. L., & Costa, L. C. M. (2008). Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide. Materials Letters, 62(21), 3710–3712.

    Article  CAS  Google Scholar 

  • Oliveira, L. C., Coura, C. V. Z., Guimarães, I. R., & Gonçalves, M. (2011). Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. Journal of Hazardous Materials, 192(3), 1094–1099.

    Article  CAS  Google Scholar 

  • Pakhomov, N. A., Kashkin, V. N., Nemykina, E. I., Molchanov, V. V., Nadtochiy, V. I., & Noskov, A. S. (2009). Dehydrogenation of C3–C4 paraffins on Cr2O3/Al2O3 catalysts in fluidized and fixed bed reactors. Chemical Engineering Journal, 154(1), 185–188.

    Article  CAS  Google Scholar 

  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451.

    Article  CAS  Google Scholar 

  • Pereira, L., & Alves, M. (2012). Dyes—environmental impact and remediation. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (1st ed., pp. 111–162). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Piccin, J. S., Guterres, M., Salau, N. P. G., & Dotto, G. L. (2017). Mass transfer models for the adsorption of Acid Red 357 and Acid Black 210 by tannery solid wastes. Adsorption Science and Technology, 35(3–4), 300–316.

    Article  CAS  Google Scholar 

  • Rao, J. R., Thanikaivelan, P., Sreeram, K. J., & Nair, B. U. (2002). Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry. Environmental Science & Technology, 36(6), 1372–1376.

    Article  CAS  Google Scholar 

  • Rock, M. L., James, B. R., & Helz, G. R. (2001). Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environmental Science & Technology, 35(20), 4054–4059.

    Article  CAS  Google Scholar 

  • Salem, F. Y., Parkerton, T. F., Lewis, R. V., Huang, J. H., & Dickson, K. L. (1989). Kinetics of chromium transformations in the environment. Science of the Total Environment, 86(1), 25–41.

    Article  Google Scholar 

  • Sinha, A. K., & Suzuki, K. (2005). Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angewandte Chemie, International Edition, 44(2), 271–273.

    Article  CAS  Google Scholar 

  • Swarnalatha, S., Ganesh Kumar, A., Tandaiah, S., & Sekaran, G. (2009). Efficient and safe disposal of chrome shavings discharged from leather industry using thermal combustion. Journal of Chemical Technology and Biotechnology, 84(5), 751–760.

    Article  CAS  Google Scholar 

  • Van der Merwe, W., Beukes, J., & Van Zyl, P. (2012). Cr (VI) formation during ozonation of Cr-containing materials in aqueous suspension-implications for water treatment. Water SA, 38(4), 505–510.

    Google Scholar 

  • Van Dyk, J. C., Benson, S. A., Laumb, M. L., & Waanders, B. (2009). Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel, 88(6), 1057–1063.

    Article  CAS  Google Scholar 

  • Wang, D., He, S., Shan, C., Ye, Y., Ma, H., Zhang, X., Zhang, W., & Pan, B. (2016). Chromium speciation in tannery effluent after alkaline precipitation: isolation and characterization. Journal of Hazardous Materials, 316, 169–177.

    Article  CAS  Google Scholar 

  • Yılmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation and Recycling, 49(4), 436–448.

    Article  Google Scholar 

  • Yoo, J., & Wachsman, E. D. (2006). Potentiometric NOx sensing behavior of Cr2O3-based sensor and TPR of the sensor element. ECS Transactions, 1(7), 173–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Technical assistance from Catalina De la Rosa and Ernesto Ornelas of CIATEC is acknowledged. The authors recognize support from LINAN and LANBAMA National Laboratories at IPICYT, as well as from Ana Iris Maldonado and Dulce Partida for the microscopy analysis and surface area measurements, respectively. FCB acknowledges SIP-IPN for financial support through the 20194931 project. Engineer Sebastian Pacheco at CICATA Altamira is acknowledged for XRD acquisition. XPS analysis was performed by Engineer Wilian Javier Cauich at the National Laboratory of Nano and Biomaterials at CINVESTAV-Merida, sponsored by the following projects: FOMIX-Yucatan, 2008-1081160 and CONACYT LA-2009-01-123913, 292692, 294643, 188345, and 204822.

Funding

This work was funded by the CIATEC A.C. (0FIA01602) and by the Ministry for Innovation of Guanajuato (Secretaria de Innovación del Estado de Guanajuato, SICES) through the SICES/058/2018 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Arcibar-Orozco.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcibar-Orozco, J.A., Barajas-Elias, B.S., Caballero-Briones, F. et al. Hybrid Carbon Nanochromium Composites Prepared from Chrome-Tanned Leather Shavings for Dye Adsorption. Water Air Soil Pollut 230, 142 (2019). https://doi.org/10.1007/s11270-019-4194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4194-x

Keywords

Navigation