Skip to main content
Log in

Ultrathin Support-Free Membrane with High Water Flux for Forward Osmosis Desalination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, an ultrathin polyamide (PA) membrane was fabricated via in situ removing polysulfone (PSF) substrate from the PSF-PA forward osmosis membrane for the first time. The physicochemical properties of the PA membranes were confirmed by means of surface morphology, chemistry analysis, and surface charge characterization. The performance of PA, PSF-PA, and physically combined PSF+PA membrane was compared in terms of water flux, reverse salt flux, and selectivity. The flux performance of these three membranes followed the order of PA>PSF-PA>PSF+PA membranes, and the possible mechanism for their performance was proposed. Compared with home-made PSF-PA and PSF+PA membranes, the ultrathin PA membrane had high water flux (i.e., 80.54 LMH) due to its low membrane resistance and minimized internal concentration polarization under same operation conditions (i.e., DI water feed solution, 1.0 M NaCl draw solution, and AL-FS orientation). This study would provide insights on the preparation and application of ultrathin PA membranes with high permeability in the context of global water/energy-related crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achilli, A., Prante, J. L., Hancock, N. T., Maxwell, E. B., & Childress, A. E. (2014). Experimental results from RO-PRO: a next generation system for low-energy desalination. Environmental Science & Technology, 48, 6437–6443.

    Article  CAS  Google Scholar 

  • Blandin, G., Verliefde, A. R. D., Tang, C. T., & Le-Clech, P. (2015). Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination. Desalination, 363, 26–36.

    Article  CAS  Google Scholar 

  • Chung, T. S., Li, X., Ong, R. C., et al. (2012). Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 1, 246–257.

    Article  CAS  Google Scholar 

  • Chun, Y., Mulcahy, D., Zou, L., et al. (2017). A short review of membrane fouling in forward osmosis processes. Membranes, 7, 30.

    Article  Google Scholar 

  • Cui, Y., Liu, X. Y., & Chung, T. S. (2017). Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: synthesis, modifications, and post-treatment. Industrial and Engineering Chemistry Research, 56, 513–523.

    Article  CAS  Google Scholar 

  • Elimelech, M., & Phillip, W. A. T. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333, 712–717.

    Article  CAS  Google Scholar 

  • Huang, L., & McCutcheon, J. R. (2015). Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science, 483, 25–33.

    Article  CAS  Google Scholar 

  • Ghosh, A. K., & Hoek, E. M. V. (2009). Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of Membrane Science, 336, 140–148.

    Article  CAS  Google Scholar 

  • Gray, G. T., McCutcheon, J. R., & Elimelech, M. (2006). Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination, 197, 1–8.

    Article  CAS  Google Scholar 

  • Karan, S., Jiang, Z., & Livingston, A. G. (2015). Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 348, 1347–1351.

    Article  CAS  Google Scholar 

  • Khorshidi, B., Thundat, T., Fleck, B. A., et al. (2016). A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific Reports, 6, 22069.

    Article  Google Scholar 

  • Klaysom, C., Cath, T. Y., Depuydt, T., et al. (2013). Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 42, 6959–6989.

    Article  CAS  Google Scholar 

  • Li, X., Wang, K. Y., Helmer, B., & Chung, T. S. (2012). Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Industrial and Engineering Chemistry Research, 51, 10039–10050.

    Article  CAS  Google Scholar 

  • Liu, Z., Bai, H., Lee, J., et al. (2011). A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 4, 2582–2585.

    Article  CAS  Google Scholar 

  • Mi, B., & Elimelech, M. (2010). Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 348, 337–345.

    Article  CAS  Google Scholar 

  • Park, S. J., Choi, W., Nam, S. E., et al. (2017). Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. Journal of Membrane Science, 526, 52–59.

    Article  CAS  Google Scholar 

  • Ren, J., & McCutcheon, J. R. (2014). A new commercial thin film composite membrane for forward osmosis. Desalination, 343, 187–193.

    Article  CAS  Google Scholar 

  • Schiermeier, Q. (2008). Water: purification with a pinch of salt. Nature, 452, 260–261.

    Article  CAS  Google Scholar 

  • Shaffer, D. L., Werber, J. R., Jaramillo, H., et al. (2015). Forward osmosis: where are we now? Desalination, 356, 271–284.

    Article  CAS  Google Scholar 

  • Tang, C. Y., Kwon, Y. N., & Leckie, J. O. (2007). Probing the nano-and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. Journal of Membrane Science, 287, 146–156.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Yip, N. Y., Phillip, W. A., et al. (2011). Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 367, 340–352.

    Article  CAS  Google Scholar 

  • Wang, Q., Gao, X., Zhang, Y., Wang, J., Xu, Y., Ji, Z., Wang, X., & Gao, C. (2017). Alleviation of water flux decline in osmotic dilution by concentration-dependent hydraulic pressurization. Chemical Engineering Research and Design, 117, 593–603.

    Article  CAS  Google Scholar 

  • Xiong, H., Dong, S., Zhang, J., Zhou, D., & Rittmann, B. E. (2018). Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Research, 136, 75.

    Article  CAS  Google Scholar 

  • Yan, H., Miao, X., Xu, J., Pan, G., Zhang, Y., Shi, Y., Guo, M., & Liu, Y. (2015). The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. Journal of Membrane Science, 475, 504–510.

    Article  CAS  Google Scholar 

  • Yip, N. Y., Tiraferri, A., Phillip, W. A., et al. (2010). High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 44, 3812–3818.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Suihua Science and Technology Project (No. SHKJ2016-033), the Doctor Research Foundation of Suihua University (No. SD13002) and the Scientific and Technological Research Projects of Suihua University (No.K201701001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Zhao or Dongwei Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 3977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhao, X., Xu, S. et al. Ultrathin Support-Free Membrane with High Water Flux for Forward Osmosis Desalination. Water Air Soil Pollut 230, 138 (2019). https://doi.org/10.1007/s11270-019-4192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4192-z

Keywords

Navigation