Skip to main content
Log in

Dissipation of Acetaminophen, Atrazine, Carbamazepine, and Sulfamethoxazole in Water Mediated by Acorus gramineus and Canna hybrida ‘Orange Punch’

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The pharmaceuticals acetaminophen, sulfamethoxazole, and carbamazepine, and herbicide atrazine are among the most highly manufactured compounds in the world and are frequently detected in the aquatic environment. Much uncertainty exists regarding the impacts of the pharmaceuticals on non-target aquatic resources, while more is known about atrazine. Reduction of residues of each chemical in surface water will reduce the exposures that organisms experience in the surface water environment, thus reducing unknown risks. This project evaluated the potential use of two aquatic plant species (Acorus gramineus and Canna hybrida ‘Orange Punch’) for reducing concentrations of the chemicals in water. Concentrations of each contaminant in solution were reduced in the presence of the plants after 14 days of exposure, in (acetaminophen 64–100%, atrazine 32–51%, carbamazepine 26–49%, sulfamethoxazole 41–60%). Results indicate that these plants have potential for reducing concentrations of these chemicals in surface water, but that plant- and chemical-specific properties prevent making generalizations regarding the extent and pathways for dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aris, A. Z., Shamsuddin, A. S., & Praveena, S. M. (2014). Occurrence of 17 alpha-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environment International, 69, 104–119.

    Article  CAS  Google Scholar 

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 43(3), 597–603.

    Article  CAS  Google Scholar 

  • Briggs, C. G., Bromilow, R. H., & Evans, A. A. (1982). Relationships between lipophilicity and root uptake and translocation of non-ionised chemcials by barley. Pesticide Science, 13, 495–504.

    Article  CAS  Google Scholar 

  • Drugbank (2019) https://www.drugbank.ca/drugs/DB00564. Accessed 5/20/2019.

  • Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. The Science of the Total Environment, 409, 3409–3417.

    Article  CAS  Google Scholar 

  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water Environment Journal, 19, 174–180.

    Article  Google Scholar 

  • Guo, Y. C., & Krasner, S. W. (2009). Occurrence of primidone, carbamazepine, caffeine, and precursors for n-nitrosodimethylamine in drinking water sources impacted by wastewater. Journal of the American Water Resources Association, 45(1), 58–67.

    Article  CAS  Google Scholar 

  • Hansch, C., Leo, A., & Hoekman, D. (1995). Exploring QSAR - hydrophobic, electronic, and steric constants (p. 48,158). Washington, DC: American Chemical Society.

    Google Scholar 

  • Hayes, T. B., Anderson, L. L., Beasley, V. R., de Solla, S. R., Iguchi, T., Ingraham, H., & Willingham, E. (2011). Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. The Journal of Steroid Biochemistry and Molecular Biology, 127(0), 64–73. https://doi.org/10.1016/j.jsbmb.2011.03.015.

    Article  CAS  Google Scholar 

  • National Institutes of Health (NIH). 2019. LiverTox, Clinical and Research Information on Drug-induced liver injury-drug record (carbamazepine). https://livertox.nih.gov/Carbamazepine.htm. Accessed 5/20/2019.

  • Heberer, T., Reddersen, K., & Mechlinski, A. (2002). From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Science and Technology, 46, 81–88.

    Article  CAS  Google Scholar 

  • Henderson, K. L., Belden, J. B., & Coats, J. R. (2007). Mass balance of metolachlor in a grassed phytoremediation system. Environmental Science & Technology, 41, 4084–4089.

    Article  CAS  Google Scholar 

  • Hoeger, S. (1988). Schwimmkampen: Germany’s artificial floating islands. Journal of Soil and Water Conservation, 43(4), 304–306.

    Google Scholar 

  • Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2011). Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Research, 45, 1432–1442.

    Article  CAS  Google Scholar 

  • Hughes, S. R., Kay, P., & Brown, L. E. (2013). Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmental Science & Technology, 47, 661–677. https://doi.org/10.1021/es3030148.

    Article  CAS  Google Scholar 

  • Kim, Y., Choi, K., Jung, J., Park, S., Kim, P., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370–375, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2006.11.017.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: a National Reconnaissance. Environmental Science & Technology, 36(6), 1202–1211. https://doi.org/10.1021/es011055j.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., Hela, D. G.,  Albanis, T. A. (2006). The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environmental Pollution, 141(3), 555-570.

    Article  CAS  Google Scholar 

  • Kumar, A., & Xagoraraki, I. (2010). Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking syste. Science of the Total Environment, 408(23), 5972–5989 ISSN 0048-9697.

    Article  CAS  Google Scholar 

  • Li, J. T., Liao, B., Lan, C. Y., Ye, Z. H., Baker, A. J. M., & Shu, W. S. (2010). Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. Journal of Environmental Quality, 39, 1262–1268.

    Article  CAS  Google Scholar 

  • Lynch, J., Fox, L. J., Owen, J. S., Jr., & Sample, D. J. (2015). Evaluation of commercial floating treatment wetland technologies for nutrient remediation of stormwater. Ecological Engineering, 75, 61–69.

    Article  Google Scholar 

  • Maharjan R. (2014). Phytoremediation of selected pharmaceuticals and their phytotoxicity to aquatic macrophytes. Theses and Dissertations. 1710.

  • Metcalfe, C. D., Miao, X.-S., Koenig, B. G., Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem, 12, 2881-2889.

    Article  CAS  Google Scholar 

  • Miyazaki, A., Kubota, F., Agata, W., Yamamoto, Y., & Song, X. (2000). Plant production and water purification efficiency by rice and umbrella plants grown in a floating culture system under various water environmental conditions. Journal of the Faculty of Agriculture, Kyushu University, 45, 29–38.

    CAS  Google Scholar 

  • Nakai, S., Zou, G., Song, X., Pan, Q., Zhou, S., & Hosomi, M. (2008). Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands. Journal of Water and Environment Technology, 6, 55–63.

    Article  Google Scholar 

  • Nduwimana, A., Yang, X.-l., Li-ren, W. (2007). Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter. J Environ Sci, 19, 1079-1085.

    Article  CAS  Google Scholar 

  • Oppenheimer, J., Eaton, A.,  Badruzzaman, M., Haghani, A. W., Jacangelo, J. G. (2011). Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions. Water Research, 45(13), 4019-4027

    Article  CAS  Google Scholar 

  • Petrovic, F. K., & Barcelo, P. (2007). Analysis, removal, effects and risk of pharmaceuticals in the water cycle. Amsterdam: Elsevier Science.

    Google Scholar 

  • Petrovic, M., Gonzalez, D., & Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685–696.

    Article  CAS  Google Scholar 

  • Ryslava, H., Pomeislova, A., Psondrova, S., Hyskova, V., & Smrcek, S. (2015). Phytoremediation of carbamazepine and its metabolite 10,11-epoxycarbamazepine by C3 and C4 plants. Environmental Science and Pollution Research, 22, 20271–20282.

    Article  CAS  Google Scholar 

  • Sacher, F., Lange, F. T., Brauch, H. J., & Blankehorn, I. (2001). Pharmaceuticals in groundwaters — analytical methods and results of a monitoring program in Baden Wurttemberg, Germany. Journal of Chromatography. A, 938, 199–210.

    Article  CAS  Google Scholar 

  • Sangster, J. (1994). In J. Sangster (Ed.), Octanol-water partition coefficients: fundamentals and physical chemistry. New York: Wiley.

    Google Scholar 

  • Sauvêtre, A., & Schröder, P. (2015). Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science, 6, 83. https://doi.org/10.3389/fpls.2015.00083.

    Article  Google Scholar 

  • Shaner, D. L. (editor). Herbicide handbook 10th Edition. Lawrence, KS, Weed Science Society of America; (2014).

  • Solomon, K. R., Baker, D. B., Richards, R. P.,  Dixon, K. R., Klaine, S. J.,  La Point, T. W.,  Kendall, R. J., Weisskopf, C. P., Giddings, J. M., Giesy, J. P., Hall, L. W.,  Williams, W. M. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15(1), 31-76.

    Article  CAS  Google Scholar 

  • Sousa, N. R., Franco, A. R., Oliveira, R. S., & Castro, P. M. L. (2012). Ectomycorrhizal fungi as an alternative to the use of chemical fertilizers in nursery production of Pinus pinaster. Journal of Environmental Management, 95, S269–S274. https://doi.org/10.1016/j.jenvman.2010.07.016.

    Article  CAS  Google Scholar 

  • Standley, L. J., Rudel, R. A., Swartz, C. H., Attfield, K. R., Christian, J., Erickson, M., & Brody, J. G. (2008). Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environmental Toxicology and Chemistry, 27(12), 2457–2468.

    Article  CAS  Google Scholar 

  • Sterling, M. C., Bonner, J. S., Ernest, A. N. S., Page, C. A., & Autenrieth, R. L. (2004). Characterizing aquatic sediment–oil aggregates using in situ instruments. Marine Pollution Bulletin, 48, 533–542.

    Article  CAS  Google Scholar 

  • Stewart, F. M., Mulholland, T., Cunningham, A. B., Kania, B. G., & Osterlund, M. T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes—results of laboratory-scale tests. Land Contamination & Reclamation, 16, 25–34.

    Article  Google Scholar 

  • Strauch, G., Moder, M., Wennrich, R., Osenbruck, K., Glaser, H.-R., Schladitz, T., et al. (2008). Indicators for assessing anthropogenic impact on urban surface and groundwater. Journal of Soils and Sediments, 8, 23–33.

    Article  CAS  Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.

    Article  CAS  Google Scholar 

  • Ternes T. A. (2005). Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water to improve the indirect potable water reuse. POSEIDON project detailed report (EU Contract No. EVK1-CT-2000-00047).

  • Todd, J., Brown, E. J. G., & Wells, E. (2003). Ecological design applied. Ecological Engineering, 20, 421–440.

    Article  Google Scholar 

  • Trapp, S. A. J., & Christiansen, H. (2004). In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation of cyanide-polluted soils, in phytoremediation: transformation and control of contaminants. Hoboken: Wiley. https://doi.org/10.1002/047127304X.ch28.

    Chapter  Google Scholar 

  • Vogel, J. R., & Majewski, P. D. (2008). Pesticides in rain in four agricultural watersheds in the United States. Journal of Environmental Quality, 37, 1101–1115.

    Article  CAS  Google Scholar 

  • Wen, L., Recknagel, F. (2002). In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment. Agriculture, Ecosystems & Environ, 90, 9-15.

    Article  CAS  Google Scholar 

  • White, S., & Cousins, M. (2013). Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering, 61, 207–215.

    Article  Google Scholar 

  • Wilson, P. C., & Boman, B. J. (2011). Characterization of selected organo-nitrogen herbicides in South Florida canals: exposure and risk assessments. Science of the Total Environment, 412-413, 119–126.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Klaine, S. J., & Whitwell, T. (1999). Phytotoxicity, uptake, and distribution of 14C simazine in Canna hybrida ‘King Humbert’. Environmental Toxicology and Chemistry, 18, 1462–1468.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Klaine, S. J., & Whitwell, T. (2000a). Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Archives of Environmental Contamination and Toxicology, 39, 282–288.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Klaine, S. J., & Whitwell, T. (2000b). Phytotoxicity, uptake, and distribution of 14C-simazine in Acorus gramenius and Pontederia cordata. Weed Science, 48, 701–709.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Klaine, S. J., & Whitwell, T. (2001). Simazine toxicity to- and uptake by- Myriophyllum aquaticum. Journal of Aquatic Plant Management, 39, 112–117.

    Google Scholar 

  • Wu, Y. H., Yang, L. Z., Li, Y. D., & Jia, C. (2008). Effects of different treatments of straw used for floating plant-bed supports. Fresenius Environmental Bulletin, 17, 810–813.

    CAS  Google Scholar 

  • Yalkowsky, S. H., & Dannenfelser, R. M. (1992). Aquasol database of aqueous solubility. Tucson: College of Pharmacy, University of Arizona.

    Google Scholar 

  • Yang, Y., Toor, G., & Williams, C. (2015). Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, USA. Journal of Soils and Sediments, a5, 993–1004.

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the National Science Foundation under Grant No.CBET-1435522. We also thank the Soil and Water Sciences Department for providing a matching assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chris Wilson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Mottaleb, N., Wilson, P.C. Dissipation of Acetaminophen, Atrazine, Carbamazepine, and Sulfamethoxazole in Water Mediated by Acorus gramineus and Canna hybrida ‘Orange Punch’. Water Air Soil Pollut 230, 135 (2019). https://doi.org/10.1007/s11270-019-4180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4180-3

Keywords

Navigation