Skip to main content
Log in

Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The textile industries’ production of effluents with a high content of organic matter and coloration is notorious, particularly as regards their effect on the aquatic environment. This occurs in the presence of dyes that inhibit light penetration, thus affecting the biodegradability of the medium. This study evaluates the advanced oxidative processes (AOP) for use in the degradation of the reactive red 195 and direct black 22 textile dyes using bench reactors. The photo-Fenton/sunlight process was efficient, achieving a degradation of over 99% for the chromophore groups after 150 min when utilizing [H2O2] = 60 mg L−1, [Fe] = 1 mg L−1, and a pH of between 3 and 4. The kinetic model into which the experimental data best fitted was the non-linear model which employs wavelength monitoring. The COD study indicated an organic matter conversion rate of 94.96%, with a good kinetic adjustment (R2= 0.9927. A mathematical model was proposed to estimate the degradation (%) according to the variables [H2O2], [Fe], pH, and λ. In addition, the present study evaluated the toxicity of the solution, both before and after the treatment, and was verified that the treated solution was toxic by using a concentration of 10% of Lactuca sativa and Syzygium aromaticum seeds. The toxicity analysis using microbiological techniques showed that, after the treatment, the percentage of inhibition was reduced considerably, dropping to 46.0% for the sample without dilution and inhibiting only 33.4% for SPT1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC: American Public Health Association (APHA), American Water Works Association, and Water and Environment Federation.

    Google Scholar 

  • Araújo, K. S., Antonelli, R., Gaydeczka, B., Granato, A. C., & Malpass, G. R. P. (2016). Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente e Água, 11, 387–401.

    Article  Google Scholar 

  • Baeissa, E. S. (2016). Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles. Journal of Alloys and Compounds, 672, 564–570. https://doi.org/10.1016/j.jallcom.2016.02.024.

    Article  CAS  Google Scholar 

  • Bonakdarpour, B., Vyrides, I., & Stuckey, D. C. (2011). Comparison of the performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. International Biodeterioration & Biodegradation, 65, 591–599. https://doi.org/10.1016/j.ibiod.2011.03.002.

    Article  CAS  Google Scholar 

  • Brito, N. N. D., & Silva, V. B. M. (2012). Processos oxidativos avançados e sua aplicação ambiental. Revista Eletrônica de Engenharia Civil, 1, 36–47. https://doi.org/10.5216/reec.v3i1.17000.

    Article  Google Scholar 

  • Cai, M., Su, J., Zhu, Y., Wei, X., Jin, M., Zhang, H., Dong, C., & Wei, Z. (2016). Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process. Ultrasonics Sonochemistry, 28, 302–310. https://doi.org/10.1016/j.ultsonch.2015.08.001.

    Article  CAS  Google Scholar 

  • Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51, 305–311. https://doi.org/10.1016/S0045-6535(02)00812-3.

    Article  CAS  Google Scholar 

  • Chen, X., Zhao, Y., Moutinho, J., Shao, J., Zydney, A. L., & He, Y. (2015). Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. Journal of Hazardous Materials, 284, 58–64. https://doi.org/10.1016/j.jhazmat.2014.10.031.

    Article  CAS  Google Scholar 

  • Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of Environmental Management, 195(1), 93–99.

    Article  CAS  Google Scholar 

  • Elaissaoui, I., Akrout, H., Grassini, S., Fulginiti, D. & Bousselmi, L. (2019). Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere, 217, 26-34. https://doi.org/10.1016/j.chemosphere.2018.10.161.

    Article  CAS  Google Scholar 

  • Elhalil, H., Tounsadi, R. E., Mahjoubi, F. Z., Farnane, M., Sadiq, M., Abdennouri, M., Qourzal, S., & Barka, N. (2016). Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process. Water Resources and Industry, 15, 41–48. https://doi.org/10.1016/j.wri.2016.07.002.

    Article  Google Scholar 

  • Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arabian Journal of Chemistry, (10), 1158–1163. https://doi.org/10.1016/j.arabjc.2013.02.009.

    Article  CAS  Google Scholar 

  • Fernandes, N. C., Brito, L. B., Costa, G. G., Taveira, S. F., Cunha–Filho, M. S. S., Oliveira, G. A. R. & Marreto, R. N. (2018). Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chemico-biological interactions, 291, 47-54. https://doi.org/10.1016/j.cbi.2018.06.003.

    Article  CAS  Google Scholar 

  • Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO). (2011). DOQ-CGCRE-008. Orientações sobre Validação de Métodos Analíticos. Rev, 04, 20.

    Google Scholar 

  • Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., & Ong, S. A. (2014). Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chemical Engineering Journal, 246, 383–390. https://doi.org/10.1016/j.cej.2014.02.100.

    Article  CAS  Google Scholar 

  • Leite, L. S., Maselli, B. S., Umbuzeiro, G. A., & Nogueira, R. F. P. (2016). Monitoring ecotoxicity of disperse red 1 dye during photo-Fenton degradation. Chemosphere, 148, 511–517.

    Article  CAS  Google Scholar 

  • Lima, D. R. S., Almeida, I. L. A., & Paula, V. I. (2016). Degradação do corante azul reativo 5G pelo processo oxidativo avançado UV/H2O2. E-xacta, 9, 101–109. https://doi.org/10.18674/exacta.v9i2.1915.

    Article  Google Scholar 

  • Martins, J. E. C. A., Neto, E. F. A., Lima, A. C. A., Ribeiro, J. P., Maia, F. E. F., & Nascimento, R. F. (2018). Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada. Engenharia Sanitária e Ambiental, 22(6), 1–10.

    Google Scholar 

  • Mitre, T. K., Leão, M. M. D., & Alvarenga, M. C. N. (2012). Tratamento de águas contaminadas por diesel/biodiesel utilizando processo Fenton. Engenharia Sanitária e Ambiental, 17, 129–136.

    Article  Google Scholar 

  • Napoleão, D. C. (2015) Avaliação e tratamento de fármacos oriundos de diferentes estações de tratamento de efluentes empregando processos oxidativos avançado. Tese de doutorado. Universidade Federal de Pernambuco, Recife, UFPE.

  • Nascimento, G. E., Napoleão, D. C., Aguiar Silva, P. K., Santana, R. M. R., Bastos, A. M. R., Zaidan, L. E. M. C., & Duarte, M. M. M. B. (2018). Photo-assisted degradation, toxicological assessment, and modeling using artificial neural networks of reactive gray BF-2R dye. Water, Air, & Soil Pollution, 229(12), 379.

    Article  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidationprocesses and biological treatments for wastewater decontamination - a review. Science of the Total Environment, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.

    Article  CAS  Google Scholar 

  • Palácio, S. M., Nogueira, D. A., Manenti, D. R., Módenes, N. A., Espinoza-Quiñones, F. R., & Borba, F. H. (2012). Estudo da toxicidade de efluente têxtil tratado por foto-Fenton artificial utilizando as espécies Lactuca Sativa e Artemia Salina. Engevista, 14, 127–134.

    Google Scholar 

  • Paulino, T. R. S., Araújo, R. S., & Salgado, B. C. B. (2015). Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2 ). Engenharia Sanitaria e Ambiental, 20, 347–352. https://doi.org/10.1590/S1413-41522015020000111627.

    Article  Google Scholar 

  • Peixoto, F., Marinho, G., & Rodrigues, K. (2013). Corantes têxteis: uma revisão. Holos, 5, 98–106.

    Article  Google Scholar 

  • Pereira, G. F., El-Ghenymy, A., Thiam, A., Carlesi, C., Eguiluz, K. I. B., Salazar-Banda, G. R., & Brillas, E. (2016). Effective removal of Orange-G azo dye from water by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode. Separation and Purification Technology, 160, 145–151. https://doi.org/10.1016/j.seppur.2016.01.029.

    Article  CAS  Google Scholar 

  • Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130–138. https://doi.org/10.1016/j.jiec.2015.11.001.

    Article  CAS  Google Scholar 

  • Rajkumar, D., & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, 133, 123–129. https://doi.org/10.1016/j.jhazmat.2004.05.039.

    Article  CAS  Google Scholar 

  • Rodrigues, C. O., & Külzer, B. N. (2016). Geração e processos físico-químicos de tratamento de efluentes líquidos contendo pigmentos. Holos Environment, 16(1), 58–69.

    Article  Google Scholar 

  • Santana, R. M. R., Nascimento, G. E., Napoleão, D. C., & Duarte, M. M. M. B. (2017). Degradation and kinetic study of reactive blue BF-5G and Remazol red RB 133% dyes using Fenton and photo-Fenton process. Reget., 31, 104–118. https://doi.org/10.5902/22361170.

    Article  Google Scholar 

  • Santana, R. M. R., Nascimento, G. E., Silva, P. K. A., Lucena, A. L. A., Procópio, T. F., Napoleão, T. H., Duarte, M. M. B., & Napoelão, D. C. (2018). Kinetic and ecotoxicological evaluation of the direct orange 26 dye degradation by Fenton and solar photo-Fenton processes. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 22(5), 1–20.

    Google Scholar 

  • Silva, L. R. C., Silva, T. L., Araújo, F. P., Silva Filho, E. C., & Osajima, J. A. (2017). Uso de fotólise direta e H2O2/UV em solução aquosa contendo o corante violeta cristal. Holos Environment, 17, 138–148.

    Article  Google Scholar 

  • Souza, S. J. O., Lobo, T. M., Sabino, A. L. O., Oliveira, S. B., & Costa, O. S. (2010). Decomposição dos antirretrovirais lamivudina e zidovudina pelo processo foto-Fenton assistido no efluente de indústria farmoquímica. Revista Processos Químicos, 4, 5967.

    Article  Google Scholar 

  • Su, C. C., Pukdee-Asa, M., Ratanatamskul, C., & Lu, M. C. (2011). Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278, 211–218. https://doi.org/10.1016/j.desal.2011.05.022.

    Article  CAS  Google Scholar 

  • Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2009). Degradação de benzeno, tolueno e xilenos em águas contaminadas por gasolina, utilizando-se processos foto-Fenton. Química Nova, 32(8), 2058–2063. https://doi.org/10.1590/S0100-40422009000800014.

    Article  CAS  Google Scholar 

  • Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76, 182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019.

    Article  CAS  Google Scholar 

  • Zaidan, L. E. M. C., Pinheiro, R. B., Santana, R. M. R., Charamba, L. V. C., Napoleão, D. C., & Silva, V. L. (2017). Evaluation of efficiency of advanced oxidative process in degradation of 2-4 dichlorophenol employing UV-C radiation reator. Reget, 21, 147–157. https://doi.org/10.5902/22361170.

    Article  Google Scholar 

  • Zanoni, M. V. B., & Yamanaka, H. (2016). Corantes: caracterização química, toxicológica, métodos de detecção e tratamento (1st ed.). São Paulo: Cultura Acadêmica.

Download references

Acknowledgments

The authors thank Núcleo de Química Analítica Avançada de Pernambuco da Fundação de Amparo a Ciência e Tecnologia de Pernambuco (NUQAAPE/FACEPE), Fundação de Apoio ao Desenvolvimento (FADE/UFPE), and Laboratório de Bioquímica de Proteínas da Universidade Federal de Pernambuco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella Carla Napoleão.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, R.M.d., Charamba, L.C.V., do Nascimento, G.E. et al. Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria. Water Air Soil Pollut 230, 136 (2019). https://doi.org/10.1007/s11270-019-4178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4178-x

Keywords

Navigation