Skip to main content
Log in

Effects of Mixed Surfactant on Enhancing High Concentration Anthracene and Pyrene Removal from Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Surfactants are considered promising and practical substances for enhancing polycyclic aromatic hydrocarbon (PAHs) removal from contaminated soil. In order to explore the effects of single and mixed surfactants on the removal of high-concentration PAHs from soil, a series of experiments have been conducted. In this study, Tween80-saponin (a mixed surfactant), Tween80 (a nonionic surfactant), and saponin (a biosurfactant) were used to remove two typical and high concentration PAHs (anthracene and pyrene) from contaminated soil. Results showed that the mixed surfactant had better performance on the solubilization of anthracene and pyrene than Tween80, but its performance was worse than saponin. When the proportion and concentration of the mixed surfactant were 1:9 and 800 mg L−1 respectively, the elution rate of anthracene could reach 97.67%, it was better than that by Tween80 and saponin. In addition, the Tween80-saponin mixed surfactant had good performance on actual PAHs contaminated soil remediation. When the proportion and concentration of Tween80-saponin were 1:9 and 800 mg L−1 respectively, the PAHs elution rate of actual contaminated soil could reach 81.31%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcántara, M. T., Gómez, J., Pazos, M., & Sanromán, M. A. (2009). PAHs soil decontamination in two steps: desorption and electrochemical treatment. Journal of Hazardous Materials, 166(1), 462–468.

    Article  Google Scholar 

  • Anyakora, C., Ogeche, A., Coker, H., Ukpo, G., & Ogah, C. (2004). A screen for benzo (a) pyrene, a caranogen, in the water samples from the Niger Delta using GC-MS. Nigerian Quarterly Journal of Hospital Medicine, 14(3), 288–293.

    Google Scholar 

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology & Biotechnology, 80(7), 723–736.

    Article  CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644.

    Article  CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2017). The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chemical Engineering Journal, 309, 563–576.

    Article  CAS  Google Scholar 

  • Blyth, W., Shahsavari, E., Morrison, P. D., & Ball, A. S. (2015). Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. Journal of Environmental Management, 162, 30–36.

    Article  CAS  Google Scholar 

  • Cecotti, M., Coppotelli, B. M., Mora, V. C., Viera, M., & Morelli, I. S. (2018). Efficiency of surfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbon-contaminated soil: link with bioavailability and the dynamics of the bacterial community. Science of the Total Environment, 634, 224–234.

    Article  CAS  Google Scholar 

  • Chun, C. L., Lee, J.-J., & Park, J.-W. (2002). Solubilization of PAH mixtures by three different anionic surfactants. Environmental Pollution, 118(3), 307–313.

    Article  CAS  Google Scholar 

  • Davin, M., Starren, A., Deleu, M., Lognay, G., Colinet, G., & Fauconnier, M.-L. (2018). Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? Chemosphere, 194, 414–421.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E., & Ng, H. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549.

    Article  CAS  Google Scholar 

  • Gharibzadeh, F., Kalantary, R. R., Nasseri, S., Esrafili, A., & Azari, A. (2016). Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Separation and Purification Technology, 168, 248–256.

    Article  CAS  Google Scholar 

  • Gonzalez, M., Mitton, F. M., Miglioranza, K. S. B., & Peña, A. (2018). Role of a non-ionic surfactant and carboxylic acids on the leaching of aged DDT residues in undisturbed soil columns. Journal of Soils and Sediments, 1–11.

  • Greish, S., Rinnan, Å., Marcussen, H., Holm, P. E., & Christensen, J. H. (2018). Interaction mechanisms between polycyclic aromatic hydrocarbons (PAHs) and organic soil washing agents. Environmental Science and Pollution Research, 25(1), 299–311.

    Article  CAS  Google Scholar 

  • Guha, S., Jaffé, P. R., & Peters, C. A. (1998). Solubilization of PAH mixtures by a nonionic surfactant. Environmental Science & Technology, 32(7), 930–935.

    Article  CAS  Google Scholar 

  • Ho, Y., Ng, J., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents. Separation and Purification Methods, 29(2), 189–232.

    Article  CAS  Google Scholar 

  • Hussein, T. A., & Ismail, Z. Z. (2013). Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system. Environmental Technology, 34(3), 351–361.

    Article  CAS  Google Scholar 

  • Ishiguro, M., & Koopal, L. K. (2016). Surfactant adsorption to soil components and soils. Advances in Colloid and Interface Science, 231, 59–102.

    Article  CAS  Google Scholar 

  • Kalantary, R. R., Badkoubi, A., Mohseni-Bandpi, A., Esrafili, A., Jorfi, S., Dehghanifard, E., et al. (2013). Modification of PAHs biodegradation with humic compounds. Soil and Sediment Contamination: An International Journal, 22(2), 185–198.

    Article  CAS  Google Scholar 

  • Kobayashi, T., Kaminaga, H., Navarro, R. R., & Iimura, Y. (2012). Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health, Part A, 47(8), 1138–1145.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2016). Bioaugmentation with novel microbial formula vs. natural attenuation of a long-term mixed contaminated soil—treatability studies in solid-and slurry-phase microcosms. Water, Air, & Soil Pollution, 227(1), 25.

    Article  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968.

    Article  CAS  Google Scholar 

  • Li, J., Hu, J., Sheng, G., Zhao, G., & Huang, Q. (2009). Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu (II) from aqueous solution to GMZ bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 349(1–3), 195–201.

    Article  CAS  Google Scholar 

  • Li, H., Chen, J., & Jiang, L. (2014a). Elevated critical micelle concentration in soil–water system and its implication on PAH removal and surfactant selecting. Environmental Earth Sciences, 71(9), 3991–3998.

    Article  CAS  Google Scholar 

  • Li, H. L., Qu, R. H., Han, X. M., & Chen, J. J. (2014b). Desorption kinetics and difference in removal enhancement of PAHs in aged soils by tween 80. Applied Mechanics and Materials, 522, 257–263.

    Article  Google Scholar 

  • Li, Z., Wang, W., & Zhu, L. (2019). Effects of mixed surfactants on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in crops and the bioremediation of contaminated farmlands. Science of the Total Environment, 646, 1211–1218.

    Article  CAS  Google Scholar 

  • Liang, X., Guo, C., Liao, C., Liu, S., Wick, L. Y., Peng, D., et al. (2017). Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environmental Pollution, 225, 129–140.

    Article  CAS  Google Scholar 

  • Liao, C., Xu, W., Lu, G., Deng, F., Liang, X., Guo, C., et al. (2016). Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecological Engineering, 92, 10–17.

    Article  Google Scholar 

  • Mackay, D., Shiu, W. Y., & Ma, K. C. (1997). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals (vol. 5). New York: CRC Press. ISBN 1-56670-255-0

  • Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials, 285, 419–435.

    Article  CAS  Google Scholar 

  • Motorykin, O., Matzke, M. M., Waters, K. M., & Massey Simonich, S. L. (2013). Association of carcinogenic polycyclic aromatic hydrocarbon emissions and smoking with lung cancer mortality rates on a global scale. Environmental Science & Technology, 47(7), 3410–3416.

    Article  CAS  Google Scholar 

  • Mulligan, C., Yong, R., & Gibbs, B. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60(1–4), 371–380.

    Article  Google Scholar 

  • Ni, H., Zhou, W., & Zhu, L. (2014). Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-tween 80 mixed surfactants. Journal of Environmental Sciences, 26(5), 1071–1079.

    Article  CAS  Google Scholar 

  • Pernyeszi, T., Patzkó, Á., Berkesi, O., & Dékány, I. (1998). Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 137(1–3), 373–384.

    Article  CAS  Google Scholar 

  • Posada-Baquero, R., Grifoll, M., & Ortega-Calvo, J.-J. (2019). Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Science of the Total Environment, 668, 790–796.

    Article  CAS  Google Scholar 

  • Seyed, R. S., Khodadadi, A., & Ganjidoust, H. (2012). Treatment of soil contaminated with crude-oil using biosurfactants.

  • Shah, A., Shahzad, S., Munir, A., Nadagouda, M. N., Khan, G. S., Shams, D. F., et al. (2016). Micelles as soil and water decontamination agents. Chemical Reviews, 116(10), 6042–6074.

    Article  CAS  Google Scholar 

  • Shi, Z., Chen, J., & Yin, X. (2013). Effect of anionic–nonionic-mixed surfactant micelles on solubilization of PAHs. Journal of the Air & Waste Management Association, 63(6), 694–701.

    Article  CAS  Google Scholar 

  • Shi, Z., Chen, J., Liu, J., Wang, N., Sun, Z., & Wang, X. (2015). Anionic–nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil. Environmental Science and Pollution Research, 22(16), 12769–12774.

    Article  CAS  Google Scholar 

  • Sun, H., Wu, W., & Wang, L. (2009). Phenanthrene partitioning in sediment–surfactant–fresh/saline water systems. Environmental Pollution, 157(8–9), 2520–2528.

    Article  CAS  Google Scholar 

  • Suszek-Łopatka, B., Maliszewska-Kordybach, B., Klimkowicz-Pawlas, A., & Smreczak, B. (2019). The drought and high wet soil condition impact on PAH (phenanthrene) toxicity towards nitrifying bacteria. Journal of Hazardous Materials, 368, 274–280.

    Article  Google Scholar 

  • Tian, B. B., Zhou, J. H., Xie, F., Guo, Q. N., Zhang, A. P., Wang, X. Q., et al. (2018). Impact of surfactant and dissolved organic matter on uptake of atrazine in maize and its mobility in soil. Journal of Soils and Sediments, 19(2), 599–608.

    Article  Google Scholar 

  • Wang, X., Sun, L., Wang, H., Wu, H., Chen, S., & Zheng, X. (2018). Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil. Environmental Technology, 39(13), 1733–1744.

    Article  CAS  Google Scholar 

  • Xiong, B., Zhang, Y., Hou, Y., Arp, H. P. H., Reid, B. J., & Cai, C. (2017). Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar. Chemosphere, 182, 316–324.

    Article  CAS  Google Scholar 

  • Zhang, D., & Zhu, L. (2012). Effects of tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution, 164, 169–174.

    Article  CAS  Google Scholar 

  • Zhao, B., Zhu, L., Li, W., & Chen, B. (2005). Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere, 58(1), 33–40.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2008). Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research, 42(1–2), 101–108.

    Article  CAS  Google Scholar 

  • Zhou, W., Yang, J., Lou, L., & Zhu, L. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159(5), 1198–1204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the School of Resources and Environmental Engineering, Wuhan University of Technology, P.R. China, for their support on experiment conducting. This research was financially supported by the National Natural Science Funds (No. 41701351) and the Fundamental Research Funds for the Central Universities (WUT: 2018IVB050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoman He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Ke, J., Zhang, Q. et al. Effects of Mixed Surfactant on Enhancing High Concentration Anthracene and Pyrene Removal from Contaminated Soil. Water Air Soil Pollut 230, 121 (2019). https://doi.org/10.1007/s11270-019-4172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4172-3

Keywords

Navigation