Skip to main content

Advertisement

Log in

Two-Staged Dielectric Barrier Discharge-Urea Configuration for the Removal of NO of NOx in a Simulated Coal-Combustion Flue Gas

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

NO is a deadly pollutant that makes up more than 90% NOx in a flue gas. NO is insoluble in water; thus, its removal is extremely difficult using the SCR method. This study investigates the feasibility of NO removal and energy efficiency from a coal-combustion flue gas connected to a DBD reactor merged with urea. The results showed that the combined effect of urea and the DBD reactor gave a significant increase in the removal of NO. Comparing the removal efficiencies of NO at different urea mass percentages (9%, 17%, 23%, 29%, and 33%), it was found that the optimum concentration of urea for efficient NO removal was 23% because there is enough NH3 produced at this concentration and less H2O species generated to consume N free radicals by OH to produce more NO in the system. The removal efficiencies of the optimum 23% urea concentration with oxygen [(NO/N2/O2/CO(NH2)2:23% w/w system] and without oxygen [(NO/N2/CO(NH2)2:23% w/w system] were also compared. It was also found that the addition of urea solution showed a considerably good energy efficiency which implies that the cost of this technology will be effective. The study complements past studies on the efficient removal of NO from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, J. A. (2016). Fundamental and Applied Studies of Non-thermal Plasma. University of Newcastle upon Tyne. School of Chemical Engineering and Advanced Materials, Publisher Newcastle University, (196 pages).

  • Act, C.S., Agency, T., Act, C.S., & Web, C.S. (2002). Overview of the human health and environmental effects of power generation: Focus on sulfur dioxide (SO 2 ), nitrogen oxides (NO X ) and mercury (Hg).

  • Agency., U. S. E. P (1999). Nitrogen oxides (NOx), why and how they are controlled, (November).

  • Barbooti, M. M., Ibraheem, N. K., & Ankosh, A. H. (2011). Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution. Journal of Environmental Protection., 2011(April), 175–185 https://doi.org/10.4236/jep.2011.22020.

    Article  CAS  Google Scholar 

  • Burtraw, D., Evans, D. A., Krupnick, A., Palmer, K., Toth, R., Burtraw, D., … Toth, R. (2005). Economics of pollution trading for SO2 and NOx, (x).

    Article  Google Scholar 

  • Finlayson, B.A., Finlayson, B.A., & Engineering, C. (2016). Ullmann ’ s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.b01.

  • Hatton, J., Peter Bulionis, P.E. (2008). A case study of the selective catalytic Reduction (SCR) system at the Algonquin Power Energy-From-Waste Facility (pp. 3–8). Philadelphia, Pennsylvania, USA.

  • Hu, X., Nicholas, J., Zhang, J. J., de Linjewile, T. M., Filippis, P., & Agarwal, P. K. (2002a). The destruction of N2O in a pulsed corona discharge reactor. Fuel, 81, 1259–1268.

    Article  CAS  Google Scholar 

  • Hu, X., Nicholas, J., Zhang, J., Linjewile, T.M., De Filippis, P., & Agarwal, P K. (2002b). The destruction of N2O in a pulsed corona discharge reactor q. Fuel, 81.

  • Hueso, J. L., Gonzalez-Elipe, A. R., Cotrino, J., & Caballero, A. (2007). Removal of NO in NO/N2 , NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2 systems by flowing microwave discharges. The Journal of Physical Chemistry A, 111, 1057–1065.

    Article  CAS  Google Scholar 

  • Kim, H. (2004). Nonthermal plasma processing for air-pollution control: A historical review. Current Issues, and Future Prospects, 91–110. https://doi.org/10.1002/ppap.200400028.

    Article  Google Scholar 

  • Koebel, M., Elsener, M., & Kleemann, M. (2000). Urea-SCR: A promising technique to reduce NO x emissions from automotive diesel engines. 59(x):335–345.

  • Kudo, Y., Taguchi, H., & Kogoshi, S. (2008). Influence of ratio of NO/NO2 on NOx removal using DBD with urea solution. In 11th International Conference on Electrostatic Precipitation, Hangzhou (pp. 1–4).

  • Leipold, F., Fateev, A., Kusano, Y., Stenum, B., & Bindslev, H. (2006). Reduction of NO in the exhaust gas by reaction with N radicals. Fuel, 85(2), 1383–1388. https://doi.org/10.1016/j.fuel.2005.12.020.

    Article  CAS  Google Scholar 

  • Levine, J. S., Augustsson, T. R., Anderson, I. C., & Hoell, J. M., Jr. (1984). Tropospheric sources of NOx: Lightning and biology. Atmospheric Environment, 18(9), 1797–1804. https://doi.org/10.1016/0004-6981(84)90355-X.

    Article  CAS  Google Scholar 

  • Maiella, P. G., & Brill, T. B. (1996). Spectroscopy of hydrothermal reactions III: The water-gas reaction , “hot spots”, and formation of volatile salts 720 K and 276 bar by T-Jump/FT-IR spectroscopy. Society for Applied Spectroscopy, 50(7), 829–835.

    Article  CAS  Google Scholar 

  • Matsumoto, T., Wang, D., Namihira, T., & Akiyama, H. (2012). Non-thermal plasma technic for air pollution control.

  • Najjar, Y. S. H. (2011). Gaseous pollutants formation and their harmful effects on health and environment. 1, 1–8. https://doi.org/10.4303/iep/E101203

    Article  Google Scholar 

  • National Bureau of Statistics of China (2014). Statistical Communiqué of the People’s Republic of China on the 2013. National Economic and Social Development. Retrieved from http://www.stats.gov.cn/english/PressRelease/201402/t20140224_515103.html.

  • Olivier, J.G.J., Janssens-Maenhout, G., Muntean, M., Peters, J.A.H.W. (2015). Trends in global CO2 emissions 2015. Agency, PBL Netherlands Environmental Assessment. Retrieved from http://edgar.jrc.ec.europa.eu/news_docs/jrc-2015-trends-in-global-co2-emissions-2015-report-98184.pdf.

  • Omidvarborna, H., Kumar, A., & Kim, D. (2015). NOx emissions from low-temperature combustion of biodiesel made of various feedstocks and blends. 140(x), 113–115.

  • Penetrante, B. M., Brusasco, R. M., Merritt, B. T., Pitz, W. J., Vogtlin, G. E., & Nal, N. T. F. R. N. A. T. I. O. (1998). Plasma-assisted catalytic reduction of NO. Society for Automotive Engineering, (724).

  • Ping, F., Chao-ping, C., Xin-ming, W., Zi-jun, T., Zhi-xiong, T., & Ding-sheng, C. (2013). Simultaneous removal of SO2 , NO and Hg 0 by wet scrubbing using urea + KMnO 4 solution. Fuel Processing Technology, 106, 645–653. https://doi.org/10.1016/j.fuproc.2012.09.060.

    Article  CAS  Google Scholar 

  • Prieto, G., Takashima, K., Mizuno, A., Prieto, O., & Gay, C. R. (2013). Dielectric barrier discharge for ammonia production. Plasma Chemistry and Plasma Processing, 337–353. https://doi.org/10.1007/s11090-012-9428-2.

    Article  Google Scholar 

  • Reduction, S. C., Device, C., Pollutants, A., Oxides, N., Limits, A. E., Type, A. S., … Considerations, O. (2002). Air Pollution Control Technology Fact Sheet, 1–5.

  • Revkin A.C. (2015). A look behind the headlines on China’s coal trends. The New York Times. Retrieved from http://dotearth.blogs.nytimes.com/2015/02/18/a-look-behind-the-headlines-on-chinas-coal-trends/?_r=1.

  • Sakamaki, T., Murata, H., Kogoshi, S. (2006). NOx removal using DBD with urea solution and plasma treated TiO2 photo-catalyst. In ICESP X-Auatralia 2006 (pp. 1–7).

  • Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B., & Brauer, J. (2004). Thermal decomposition ( pyrolysis ) of urea in an open reaction vessel. Thermochimica Acta, 424, 131–142. https://doi.org/10.1016/j.tca.2004.05.018.

    Article  CAS  Google Scholar 

  • Shui-E, Y., Bao-Min, S., Xu-Dong, G., Hai-Ping, Xiao. (2009). The Effect of Oxygen and Water Vapor on Nitric Oxide Conversion with a Dielectric Barrier Discharge Reactor. Plasma Chem Plasma Process, 29(2), 421–31. https://doi.org/10.1007/s11090-009-9190-2.

    Article  CAS  Google Scholar 

  • States, U. (1998). NOx What is it? Where does it come from ?, (September).

  • Stradella, L., & Argentero, M. (1993). A study of the thermal decomposition of urea , of related compounds and thiourea using DSC and TG-EGA. Thermochimica Acta, 219, 315–323.

    Article  CAS  Google Scholar 

  • Wang, J., Wu, C., Chen, J., & Zhang, H. (2006). Denitrification removal of nitric oxide in a rotating drum biofilter. 121(x), 45–49. https://doi.org/10.1016/j.cej.2006.04.004.

    Article  CAS  Google Scholar 

  • Wei, J., Luo, Y., Yu, P., Cai, B., & Tan, H. (2009). Journal of industrial and engineering chemistry removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions. 15, 2008–2010. https://doi.org/10.1016/j.jiec.2008.07.010.

    Article  CAS  Google Scholar 

  • Xiao, X.C., X. N. W. (2005). Study on pollution and control of NOX in air environment. Coal Technol, (24), 1–2.

  • Yearbook, S. (2012). Statistical yearbook.

  • Yeates, G.L., & Nielsen, D.M.. (2000). The effects of acid precipitation on ground water quality in the northeastern United States.

  • Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., … Amann, M. (2013). NOx emissions in China: Historical trends and future perspectives. 9869–9897. https://doi.org/10.5194/acp-13-9869-2013

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Atta Opoku.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingyu, H., Opoku, P.A., Junwei, L. et al. Two-Staged Dielectric Barrier Discharge-Urea Configuration for the Removal of NO of NOx in a Simulated Coal-Combustion Flue Gas. Water Air Soil Pollut 230, 120 (2019). https://doi.org/10.1007/s11270-019-4165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4165-2

Keywords

Navigation