Skip to main content

Advertisement

Log in

Urbanized Tributary Causes Loss of Biodiversity in a Neotropical River Segment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We used the community of benthic macroinvertebrates, alongside physical and chemical characteristics of the water, to verify the influence of an urbanized tributary on a Neotropical river. Specifically, our hypothesis is that urbanized tributaries are potentially able to simplify the biological diversity of the rivers where they flow. The collections were sampled in six sites every 2 weeks from April 2013 to March 2014, using artificial substrates. In conjunction with the benthic macroinvertebrate collections, the temperature, pH, and dissolved oxygen were measured using portable devices, as well as ammonia, total nitrogen, total phosphorus, and biochemical oxygen demand (BOD) in the laboratory. Rainfall values were also obtained. We observed a marked fall in the number of taxa and the values of richness, diversity equitability at the point located below the tributary mouth, with predominance of Chironomidae and Annelida. The high capture rates of a few groups considered tolerant and the high concentrations of total nitrogen, total phosphorus, and BOD confirm the alteration of the quality of the water at the sampling point located below the tributary mouth, leading to a local process of ecological simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

    Article  Google Scholar 

  • APHA – American Public Health Association. (2012). Standard methods for the examination of water and wastewater (22th ed.). Washington.

  • Azrina, M. Z., Yap, C. K., Ismail, A. R., Ismael, A., & Tan, S. G. (2006). Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and Environmental Safety, 64(3), 337–347. https://doi.org/10.1016/j.ecoenv.2005.04.003.

    Article  CAS  Google Scholar 

  • Bagatini, Y. M., Delariva, R. L., & Higuti, J. (2012). Benthic macroinvertebrate community structure in a stream of the north-west region of Paraná State, Brazil. Biota Neotropica, 12(1), 307–317. https://doi.org/10.1590/S1676-06032012000100023.

    Article  Google Scholar 

  • Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623–2632.

  • Borcard, D., Gillet, F., & Legendre, P. (2012). Numerical ecology with R. New York: Springer.

    Google Scholar 

  • Bouchard, R. W. (2004). Guide to Aquatic Macro Invertebrates of the Upper Midwest. St. Paul: Water Resources Centre, Minnesota.

    Google Scholar 

  • Brasil. (2005). Resolução n° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União 1.

  • Burgherr, P., & Ward, J. V. (2001). Longitudinal and seasonal distribution patterns of the benthic fauna of an alpine glacial stream (Val Roseg, Swiss Alps). Freshwater Biology, 46(12), 1705–1722. https://doi.org/10.1046/j.1365-2427.2001.00853.x.

    Article  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002.

    Article  CAS  Google Scholar 

  • Cao, Y., Zhang, E., Tang, H., Langdon, P., Ning, D., & Zheng, W. (2016). Combined effects of nutrients and trace metals on chironomid composition and morphology in a heavily polluted lake in central China since the early 20th century. Hydrobiologia, 779(1), 147–159. https://doi.org/10.1007/s10750-016-2810-y.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. https://doi.org/10.1038/nature11148.

    Article  CAS  Google Scholar 

  • Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in Neotropical savanna streams. Ecological Indicators, 84, 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030.

    Article  Google Scholar 

  • CIH – Centro Internacional de Hidroinformática. (2018). Bacia hidrográfica do rio São Francisco Verdadeiro. Programa hidrológico internacional – UNESCO Help Program. 2017. http://saofrancisco.hidroinformatica.org/br/basin.html. Accessed 12 April 2018

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

    Article  Google Scholar 

  • Cortezzi, S. S., Bispo, P. C., Paciencia, G. P., & Leite, R. C. (2009). Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia: Série Zoologia, 99(1), 36–43. https://doi.org/10.1590/S0073-47212009000100005.

    Article  Google Scholar 

  • Costa, C., Ide, S., & Simonka, C. E. (2006). Insetos Imaturos. Metamorfose e identificação. Ribeirão Preto: Holos Editora.

    Google Scholar 

  • de la Fuente, M., Bonada, N., Beche, L., Dahm, C. N., Mendez, P. K., Tockner, K., et al. (2018). Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes. Hydrobiologia, 808(1), 353–370. https://doi.org/10.1007/s10750-017-3437-3.

    Article  Google Scholar 

  • Deliberalli, W., Cansian, R. L., Pereira, A. A. M., Loureiro, R. C., Hepp, L. U., & Restello, R. M. (2018). The effects of heavy metals on the incidence of morphological deformities in Chironomidae (Diptera). Zoologia, 35, 1–7. https://doi.org/10.3897/zoologia.35.e12947.

    Article  Google Scholar 

  • Egler, M., Buss, D. F., Moreira, J. C., & Baptista, D. F. (2012). Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil. Brazilian Journal of Biology, 72(3), 437–443. https://doi.org/10.1590/S1519-69842012000300004.

    Article  CAS  Google Scholar 

  • Encalada, A. C., Calles, J., Ferreira, V., Canhoto, C. M., & Graça, M. A. S. (2010). Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology, 55(8), 1719–1733. https://doi.org/10.1111/j.1365-2427.2010.02406.x.

    Article  Google Scholar 

  • Feio, M. J., Coimbra, C. N., Graça, M. A., Nichols, S. J., & Norris, R. H. (2010). The influence of extreme climatic events and human disturbance on macroinvertebrate community. Patterns of a Mediterranean stream over 15y. Journal North American Benthology Society, 29(4), 1397–1409. https://doi.org/10.1899/09-158.1.

    Article  Google Scholar 

  • Fox, J., & Weisberg, S. (2011). Multivariate linear models in R (An R Companion to Applied Regression). Los Angeles: Thousand Oaks.

    Google Scholar 

  • Hamada, N., Nessimian, J. L., & Querino, R. B. (2014). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora do INPA.

    Google Scholar 

  • Heino, J. (2014). Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecological Indicators, 36, 186–194. https://doi.org/10.1016/j.ecolind.2013.07.022.

    Article  Google Scholar 

  • Hepp, L. U., Restello, R. M., Milesi, S. V., Biasi, C., & Molozzi, J. (2013). Distribution of aquatic insects in urban headwater streams. Acta Limnologica Brasiliensia, 25(1), 1–9. https://doi.org/10.1590/S2179-975X2013005000014.

    Article  Google Scholar 

  • Kuzmanovic, M., Dolédec, S., Castro-Catala, N., Ginebreda, A., Sabater, S., Muñoz, I., et al. (2017). Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research, 156, 485–493. https://doi.org/10.1016/j.envres.2017.03.054.

    Article  CAS  Google Scholar 

  • Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573–592. https://doi.org/10.2307/1468118.

    Article  Google Scholar 

  • Legendre, P., Oksanen, J., & ter Braak, C. J. (2011). Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2(3), 269–277.

  • Moretto, Y., Simões, N. R., Benedito, E., & Higuti, J. (2013). Effect of trophic status and sediment particle size on diversity and abundance of aquatic Oligochaeta (Annelida) in Neotropical reservoirs. Annales de Limnologie - International Journal of Limnology, 49(1), 65–78. https://doi.org/10.1051/limn/2013040.

    Article  Google Scholar 

  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Rio de Janeiro: Technical Books Editora.

    Google Scholar 

  • Niba, A., & Sakwe, S. (2018). Turnover of benthic macroinvertebrates along the Mthatha River, Eastern Cape, South Africa: implications for water quality bio-monitoring using indicator species. Journal of Freshwater Ecology, 33(1), 157–171. https://doi.org/10.1080/02705060.2018.1431969.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2016). Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan.

  • Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E., & Fausch, K. D. (2004). Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution, 19(1), 18–24. https://doi.org/10.1016/j.tree.2003.09.010.

    Article  Google Scholar 

  • Palácio, S. M., Espinoza-Quiñones, F. R., de Pauli, A. R., Piana, P. A., Queiroz, B. Q., Fabris, S. C., et al. (2016). Assessment of anthropogenic impacts on the water quality of Marreco River, Brazil, based on principal component analysis and toxicological assays. Water, Air, and Soil Pollution, 227(307). https://doi.org/10.1007/s11270-016-3025-6.

  • Palma, P., Matos, C., Alvarenga, P., Köck-Schulmeyer, M., Simões, I., Barceló, D., et al. (2018). Ecological and ecotoxicological responses in the assessment of the ecological status of freshwater systems: a case-study of the temporary stream Brejo of Cagarrão (South of Portugal). Science of the Total Environment, 634, 394–406. https://doi.org/10.1016/j.scitotenv.2018.03.281.

    Article  CAS  Google Scholar 

  • Peipoch, M., Brauns, M., Hauer, F. R., Weitere, M., & Valett, H. M. (2015). Ecological simplification: human influences on riverscape complexity. BioScience, 65(11), 1057–1065. https://doi.org/10.1093/biosci/biv120.

    Article  Google Scholar 

  • Petsch, D. K. (2016). Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101(3–4), 113–122. https://doi.org/10.1002/iroh.201601850.

    Article  Google Scholar 

  • Pinna, M., Marini, G., Rosati, I., Neto, J. M., Patrício, J., Marques, J. C., et al. (2013). The usefulness of large body-size macroinvertebrates in the rapid ecological assessment of Mediterranean lagoons. Ecological Indicators, 29, 48–61. https://doi.org/10.1016/j.ecolind.2012.12.011.

    Article  Google Scholar 

  • R Development Core Team. (2008). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rosi, E. J., Bechtold, H. A., Snow, D., Rojas, M., Reisinger, A. J., & Kelly, J. J. (2018). Urban stream microbial communities show resistance to pharmaceutical exposure. Ecosphere, 9(1), 1–16. https://doi.org/10.1002/ecs2.2041.

    Article  Google Scholar 

  • Ruaro, R., Gubiani, É. A., Cunico, A. M., Moretto, Y., & Piana, P. A. (2016). Comparison of fish and macroinvertebrates as bioindicators of Neotropical streams. Environmental Monitoring and Assessment, 188(1), 1–13. https://doi.org/10.1007/s10661-015-5046-9.

    Article  Google Scholar 

  • Sado-Inamura, Y., & Fukushi, K. (2018). Considering water quality of urban rivers from the perspectives of unpleasant odor. Sustainability, 10(3), 1–14. https://doi.org/10.3390/su10030650.

    Article  Google Scholar 

  • Vinebrooke, R. D., Cottingham, K. L., Norberg, M. S. J., Dodson, S. I., Maberly, S. C., & Sommer, U. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104, 451–457. https://doi.org/10.1111/j.0030-1299.2004.13255.x.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Research Group on Fishing Resources and Limnology (GERPEL) for their support in the analysis and to the Coordination of Improvement of Higher Level Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) for granting a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vanderlei Sanches.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM

(PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Tronco Johann, A., Mangolin, L.P., Sanches, P.V. et al. Urbanized Tributary Causes Loss of Biodiversity in a Neotropical River Segment. Water Air Soil Pollut 230, 118 (2019). https://doi.org/10.1007/s11270-019-4164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4164-3

Keywords

Navigation